
WYDZIAŁ AUTOMATYKI, ROBOTYKI I ELEKTROTECHNIKI

Instytut Automatyki i Robotyki

Praca dyplomowa inżynierska

AUTOMATYCZNA STABILIZACJA RUCHU WIROWEGO

RAKIETY SPORTOWEJ

Natalia Wiśniewska, 144558

Andrzej Rafalski, 144502

Promotor

dr hab. inż. Maciej Marcin Michałek, prof. PP

POZNAŃ 2023

Streszczenie

Celem pracy dyplomowej jest zaprojektowanie oraz weryfikacja działania układu automatycznej stabi-

lizacji ruchu wirowego rakiety sportowej. Praca zawiera implementację symulatora ruchu rakiety w sześciu

stopniach swobody w programie MATLAB, projekt układu sterowania prędkością rotacji w osi podłużnej

(ang. roll), projekt komputera pokładowego oraz wyniki eksperymentalnej weryfikacji układu sterowania.

Zaprojektowany układ sterowania wykorzystuje sterownik ADRC (ang. Active Disturbance Rejection

Control). Jego zadaniem jest zerowanie prędkości rotacji rakiety w osi podłużnej. Symulacyjna weryfikacja

układu sterowania została przeprowadzona przy użyciu zaprojektowanego modelu rakiety w programie

MATLAB.

Następnie skuteczność zaprojektowanego oraz zaimplementowanego układu sterowania została zwe-

ryfikowana podczas eksperymentu przeprowadzonego w tunelu aerodynamicznym. W celu weryfikacji

działania układu w stałych oraz zmiennych warunkach przepływu powietrza zrealizowano dwa scena-

riusze testowe. Wyniki testów potwierdziły skuteczność działania układu sterowania. Pozwoliły także

na wyciągnięcie wniosków co do dalszego rozwoju projektu.

I

Spis treści

1 Wprowadzenie 1

1.1 Cel i zakres pracy . 1

1.2 Znaczenie tematu pracy . 1

1.3 Struktura pracy dyplomowej . 3

2 Równania ruchu rakiety 5

2.1 Fizyczne podstawy równań modelu . 5

2.2 Parametry modelu rakiety - wyprowadzenie zależności . 7

2.3 Wyprowadzenie równań dla ruchu postępowego . 11

2.4 Wyprowadzenie równań dla ruchu obrotowego . 14

3 Projekt układu sterowania 19

3.1 Definicja zadania sterowania . 19

3.2 Uzasadnienie wyboru algorytmu sterowania . 19

3.3 Podstawy działania ADRC . 20

3.4 Wyprowadzenie równań dla sterownika ADRC . 22

4 Implementacja układu sterowania i modelu rakiety w środowisku MATLAB/Simulink 27

4.1 Implementacja modelu rakiety . 27

4.1.1 Parametry fizyczne wykorzystanej rakiety . 27

4.1.2 Sposób implementacji modelu rakiety w środowisku MATLAB/Simulink 29

4.1.3 Implementacja układu wykonawczego w środowisku MATLAB/Simulink 44

4.2 Porównanie działania modelu rakiety z programem OpenRocket 44

4.3 Implementacja układu sterowania ADRC . 45

4.3.1 Implementacja w środowisku MATLAB/Simulink 46

4.3.2 Dobór parametrów sterownika . 50

4.4 Wyniki działania układu sterowania w symulacji . 50

5 Implementacja układu sterowania na pokładzie rakiety sportowej 59

5.1 Projekt płytki drukowanej komputera pokładowego . 59

5.1.1 Dobór elementów elektronicznych komputera pokładowego 59

5.1.2 Projekt PCB . 60

5.2 Oprogramowanie komputera pokładowego . 65

5.2.1 Opis architektury oprogramowania . 65

5.2.2 Implementacja sterownika ADRC w oprogramowaniu komputera 67

5.2.3 Sposób zapisu danych pomiarowych . 68

5.3 Weryfikacja działania oprogramowania komputera . 69

5.3.1 Test oprogramowania komputera pokładowego . 69

III

IV Spis treści

5.3.2 Test czujnika żyroskopowego komputera pokładowego 70

5.4 Budowa i opis działania mechanizmu wykonawczego poruszającego lotkami sterującymi . 70

5.5 Identyfikacja modelu układu wykonawczego poruszającego lotkami sterującymi 74

5.5.1 Wyznaczenie charakterystyki statycznej . 74

5.5.2 Wyznaczenie modelu dynamiki układu wykonawczego poruszającego lotkami ste-

rującymi . 75

6 Stanowisko testowe i wyniki eksperymentów 79

6.1 Opis stanowiska testowego . 79

6.2 Dobór parametrów geometrycznych stanowiska . 84

6.3 Wyniki eksperymentu . 85

7 Podsumowanie 93

Literatura 97

Rozdział 1

Wprowadzenie

1.1 Cel i zakres pracy

System sterowania prędkością rotacji w kontekście rakiety pozwala na zadanie zerowej prędkości wokół

osi podłużnej (ang. roll), równoległej do korpusu rakiety [41]. Pojęcie rakiety sportowej rozumiane jest

w kontekście rakiety badawczej, która jest wykorzystywana podczas sportowych zawodów rakietowych.

Praca dyplomowa obejmuje implementację symulatora ruchu rakiety w sześciu stopniach swobody,

projekt płytki drukowanej komputera pokładowego oraz enkodera magnetycznego, przygotowanie opro-

gramowania dla komputera pokładowego, zaprojektowanie sterownika do układu sterowania prędkością

ruchu wirowego, zaprojektowanie mocowania elektroniki do stanowiska testowego oraz eksperymentalną

weryfikację działania układu sterowania. Projekt płytki drukowanej komputera pokładowego i modułu

enkodera magnetycznego oraz implementację modelu rakiety w programie MATLAB wykonał Andrzej

Rafalski. Za wykonanie oprogramowania, projekt mocowania elektroniki oraz projekt sterownika odpowie-

dzialna była Natalia Wiśniewska. Praca dyplomowa została wykonana we współpracy z kołem naukowym

PUT Rocketlab [8].

1.2 Znaczenie tematu pracy

Typowa misja rakiety badawczej składa się z pięciu etapów widocznych na rys. 1.1. Kolejno fazy misji

można określić jako: start rakiety, faza lotu napędzana silnikiem, lot po wypaleniu silnika, osiągnięcie

apogeum wysokości oraz faza odzysku rakiety (np. z wykorzystaniem spadochronu). W zależności od

charakteru misji w poszczególnych etapach lotu wykonywane są dodatkowe zadania.

Podczas drugiego i trzeciego etapu widocznych na rys. 1.1 rakieta, wznosząc się, obraca się wokół

osi podłużnej. Bezpośrednią przyczyną powstawania prędkości rotacji są naturalne występujące niesy-

metryczności rakiety. Można do nich zaliczyć przekrzywienie stateczników względem osi podłużnej wy-

nikające z błędu montażu, niesymetrycznie rozłożona masa czy niesymetryczna głowica [22]. Dokonana

analiza danych telemetrycznych dla rakiet ARAV-B wykazała, że wprowadzenie przekrzywienia lotek sta-

bilizujących o kąt 0, 5◦ prowadzi do prędkości rotacji 540◦
s dla wartości prędkości około 1 liczby Macha

(wyjaśnienie pojęcia w rozdziale 2) [41][27]. Z raportu dla rakiety dwustopniowej Sidewinder-Arcas [28],

dla wychylenia stateczników o 0, 2◦ przy wartości prędkości około 2,5 liczby Macha, prędkość rotacji

wyniosła 1260◦
s . Małe kąty błędu montażu lotek stabilizujących prowadzą, więc do znacznych prędkości

rotacji. Wytwarzanie rakiety badawczej w reżimie precyzyjnego montażu jest czasochłonne i kosztowne.

Oprócz tego niemożliwe jest całkowite wyeliminowanie niedokładności wykonania. W związku z tym

istnieje potrzeba zaprojektowania układu stabilizacji ruchu wirowego rakiety.

Istnieją dwie możliwości sterowania prędkością rotacji. Pierwszą z nich jest zerowanie prędkości ką-

towej, która pozwala na zebranie dokładniejszych odczytów z czujników oraz uzyskanie obrazu z kamer

1

2 Wprowadzenie

3

5

1

2

4

Rysunek 1.1: Ogólny schemat misji rakiety badawczej. Gdzie: 1 — start rakiety, 2 — lot napędzany silnikiem, 3 — lot
po wypaleniu silnika (bezwładnościowy), 4 — osiągnięcie apogeum wysokości, 5 — faza odzysku rakiety (np. z wykorzy-
staniem spadochronu).

o lepszej jakości. Ma to również zastosowanie w przypadku fazy odzysku rakiety badawczej. Redukcja

prędkości rotacji zapobiega niechcianym zachowaniom spadochronu odzyskowego. Drugą możliwością jest

uzyskanie niezerowej prędkości rotacji, pomagającej w stabilizacji lotu. W tej pracy za główny cel zo-

stało postawione zadanie zerowania prędkości rotacji. Korzyści, które przynosi realizacja wybranego celu

sterowania, pozwala na rozwój rakiety badawczej pod względem fuzji danych z czujników (ang. sensor

fusion), algorytmów przetwarzania obrazów oraz zwiększa szanse powodzenia misji.

Istnieje kilka rozwiązań pozwalających na sterowanie prędkością rotacji rakiety. Podejścia te opierają

się na kombinacji różnych konfiguracji lotek. Do często spotykanych układów lotek należy konfiguracja

składająca się z tylnych powierzchni sterowych (ang. tails), umieszczonych na ogonie rakiety oraz lotek

sterujących, umieszczonych w konfiguracji kaczki (ang. canards), to znaczy przed środkiem ciężkości

rakiety (rys. 1.2) [41, 22, 36, 13].

Lotki stabilizujące Lotki sterujące GłowicaKadłub

Rysunek 1.2: Poglądowy widok rakiety z wybraną kombinacją lotek

Tylne ruchome powierzchnie sterowe często poprzedzane dodatkowymi lotkami są bardziej efektywne

dla dużych kątów natarcia (wyjaśnienie pojęcia w rozdziale 2). Wywołują one mniejszy moment siły w

1.3. Struktura pracy dyplomowej 3

osi podłużnej oraz powodują mniejsze obciążenia dla systemu wykonawczego sterującego wychyleniem

tylnych lotek [22]. Zastosowanie lotek sterujących w konfiguracji kaczki wymaga nieruchomych lotek

umieszczonych na tylnej części korpusu rakiety zwanych statecznikami, które zapewniają stabilność tra-

jektorii rakiety. Dostosowywanie powierzchni lotek obu rodzajów oraz położenie ruchomych powierzchni

sterowych względem czubka rakiety, pozwala natomiast na zapewnienie odpowiedniej manewrowości (za-

pewnia efektywność lotek sterujących) oraz stabilności (wyjaśnienie pojęcia w rozdziale 2). W przypadku

zastosowania tej kombinacji do sterowania prędkością rotacji wystarczą tylko dwie ruchome powierzchnie

sterowe, jednak są one efektywne tylko dla małych kątów natarcia rakiety [22].

W ramach pracy dyplomowej został zaprojektowany układ sterowania dla rakiet poddźwiękowych

(nieprzekraczających wartości prędkości 0,8 liczby Macha), statycznych (wyjaśnienie pojęcia w rozdziale

2), których profil misji najczęściej polega na wyniesieniu ładunku badawczego na określony pułap nie-

przekraczający górnej warstwy troposfery (ok. 11 km wysokości) [18]. Planowana trajektoria lotu rakiety

nie obejmuje, więc dużych kątów natarcia tzn. wykraczających poza ±15◦ [22].

Wobec powyższych założeń została wybrana konfiguracja kaczki, przedstawiona na rys. 1.2, zapew-

niająca uproszczony montaż oraz projektowanie podzespołów. Ponadto istnieje możliwość rozbudowy

wybranej konfiguracji lotek zapewniającej efektywność dla większych kątów natarcia [22]. Same lotki

sterujące działają na zasadzie wychylenia przeciwsobnego.

1.3 Struktura pracy dyplomowej

Praca kolejno zawiera wprowadzenie teoretyczne, które obejmuje równania oraz przyjęte uproszczenia

dla analizowanego ruchu rakiety, a także wyjaśnienie projektu układu sterowania ADRC (ang. active di-

sturbance rejection control) oraz wyprowadzenie adekwatnych równań dla obiektu sterowania. Następnie

przedstawione są: implementacja symulatora ruchu rakiety 6 DoF, sterownika w programie MATLA-

B/Simulink oraz wyniki symulacji. W dalszej kolejności zaprezentowane są wyniki projektu, w tym uru-

chomienie płytki drukowanej, integracja podzespołów oraz test działania układu sterowania w tunelu

aerodynamicznym. Praca kończy się podsumowaniem.

Rozdział 2

Równania ruchu rakiety

2.1 Fizyczne podstawy równań modelu

Równania opisujące modelu rakiety zostały wyprowadzone na podstawie [17] oraz [34]. W celu mate-

matycznego opisania modelu rakiety wprowadzono szereg oznaczeń wielkości fizycznych.

x

y

zxcp

xcg

α

vm

p

r

q

CP

CG

Lotki stabilizujące

Lotki sterujące

Głowica

Kadłub

Rysunek 2.1: Lokalny układ współrzędnych rakiety oraz podstawowe wielkości

Jak przedstawiono na rysunku 2.1, przyjęto, że lokalny układ współrzędnych rakiety (osie x, y i z) jest

prawoskrętnym układem współrzędnych. Oś x skierowana jest wzdłuż osi podłużnej rakiety w kierunku jej

czubka (ang. nose cone). Prędkości rotacji rakiety wokół osi x, y oraz z (inaczej prędkości kątowe w osiach

podłużnej (ang. roll), poprzecznej (ang. pitch) oraz pionowej (ang. yaw) [17]) oznaczono odpowiednio

przez p, q, r. Jedną z wielkości fizycznych, która jest używana do opisu ruchu obiektów latających, jest

kąt natarcia α (ang. angle of attack) [36]. Jest to kąt pomiędzy wektorem wypadkowej prędkości ruchu

punktu ciężkości rakiety a jej osią podłużną.

Jako punkt referencyjny, względem którego rozpatrywano ruch rakiety, przyjęto środek ciężkości

(ang. center of gravity) oznaczony jako CG na rys. 2.1. Założono, że rakieta jest symetryczna względem

osi podłużnej. Zatem to na niej znajduje się środek ciężkości rakiety. Położenie punktu referencyjnego

zostało opisane jako jego odległość od czubka rakiety xcg.

5

6 Równania ruchu rakiety

Ważnym pojęciem jest także środek parcia (ang. center of pressure) oznaczony jako CP na rys. 2.1. Jest

to punkt względem, którego rozpatruje się działanie na rakietę wypadkowej siły aerodynamicznej [36, 42].

Z tego względu jest to także punkt, względem którego momenty sił aerodynamicznych są równe 0.

Położenia środków parcia oraz ciężkości są wykorzystywane do analizy stabilności lotu rakiety. Rakieta

jest stabilna, jeśli punkt parcia znajduje się w większej odległości od czubka rakiety niż środek ciężko-

ści [34]. Wynika to z tego, że przy takim położeniu środka parcia oraz niezerowym kącie natarcia, siła

CPCG

FN

vm
α

kierunek przepływu powietrza

Rysunek 2.2: Ilustracja działania siły normalnej przy niezerowym kącie natarcia

normalna przyłożona do kadłuba rakiety generuje moment siły starający się ustawić rakietę równolegle

do kierunku przepływu powietrza.

W przypadku rozpatrywania ruchu obiektów latających często stosuje się liczbę Macha jako miarę

prędkości w ruchu postępowym. Opisuje ona stosunek prędkości postępowej obiektu do prędkości rozcho-

dzenia się dźwięku w powietrzu.

Konieczne jest także oznaczenie istotnych parametrów geometrycznych powierzchni sterowych ra-

kiety tj. lotek sterujących i stateczników. Przyjęto, że wszystkie powierzchnie sterowe mają kształt tra-

Cr

Ct

s

M
AC

xt

Γc
c

Rysunek 2.3: Parametry opisujące geometrię lotki (za pracą [34])

pezu o długościach podstaw równych Cr oraz Ct tak jak to zostało przedstawione na rys. 2.3. Cr jest

długością podstawy, która przymocowana jest to korpusu rakiety, a Ct — podstawy zewnętrznej lotki.

Odcinek oznaczony na rys. 2.3 jako MAC (ang. mean aerodynamic chord) jest równoległy do podstaw

lotki. Określa on pozycję, w jakiej należałoby umieścić bok prostokątnej lotki, stykający się z kadłubem,

tak aby miała ona taki sam wpływ na generowanie siły aerodynamicznej, jak rozpatrywana lotka [17].

Istotnym parametrem jest także odległość xt, o jaką przesunięte są początki podstaw lotki (patrząc od

2.2. Parametry modelu rakiety - wyprowadzenie zależności 7

czubka rakiety), a także kąt Γc pomiędzy odcinkiem c łączącym środki postaw a odcinkiem prostopadłym

do podstawy lotki.

Na potrzeby wyprowadzenia modelu rakiety założono, że powierzchnie sterowe mogą być wychylane

od pionu o małe wartości kąta tj. nie większe niż ±10◦ [22]. Przyjęto, że silnik zamocowany jest tak,

aby jego oś podłużna pokrywała się z osią podłużną rakiety. Co za tym idzie siła ciągu działa wyłącznie

wzdłuż wspomnianej osi rakiety.

W celu zamodelowania dynamiki ruchu rakiety wykorzystana została tzw. metoda Barrowmana [11].

Pozwala ona na numeryczne wyznaczanie położenia środka parcia, jak i sił oraz momentów sił działa-

jących na rakietę podczas lotu. Dzięki temu stosowana jest do analizy stabilności lotu rakiety. Może

być także wykorzystana do wyprowadzenia równań opisujących jej ruch [34]. W celu wykorzystania me-

tody Barrowmana do analizy położenia środka parcia należy podzielić rakietę na mniejsze komponenty.

W przypadku klasycznego wykorzystania tej metody są to:

• głowica,

• kadłub rakiety,

• zestaw lotek stabilizujących.

Jednak ze względu na większą liczbę lotek w analizowanej rakiecie (dodatkowe lotki sterujące) dokonano

jej podziału na:

• głowicę,

• lotki sterujące,

• lotki stabilizujące

• dwie połowy kadłuba rakiety (do każdej z nich przymocowane są lotki jednego typu).

2.2 Parametry modelu rakiety - wyprowadzenie zależności

Jedną z wielkości, od której zależne są siły oraz momenty sił aerodynamicznych jest ciśnienie dyna-

miczne [36], opisywane wzorem:

Q =
1

2
ρv2m, (2.1)

gdzie:

ρ - gęstość powietrza
[

kg
m3

]
,

vm - wartość prędkości przepływu powietrza względem rakiety
[
m
s

]
.

Siły aerodynamiczne i momenty sił przez nie generowane opisywane są jako iloczyn ciśnienia dy-

namicznego (obliczanego na podstawie równania (2.1)), umownego pola referencyjnego (oraz długości

referencyjnej w przypadku momentów sił) i współczynnika wyznaczonego analitycznie lub doświadczal-

nie. Można je wyznaczyć za pomocą równań

F = QCFAref , (2.2)

L = QCLArefdref , (2.3)

gdzie:

F - obliczana siła aerodynamiczna [N],

L - obliczany moment siły aerodynamicznej [Nm],

Q - ciśnienie dynamiczne [Pa],

8 Równania ruchu rakiety

CF - współczynnik obliczanej siły aerodynamicznej [·],
CL - współczynnik obliczanego momentu siły aerodynamicznej [·],
Aref - powierzchnia referencyjna

[
m2
]
,

dref - długość referencyjna [m].

Współczynniki służące do wyznaczania sił oraz momentów mogą być obliczane w sposób analityczny

lub doświadczalny. Jako powierzchnię i długość referencyjną w przypadku metody Barrowmana uznaje

się pole przekroju poprzecznego kadłuba rakiety oraz jego średnicę w najszerszym punkcie.

Występują dwa rodzaje sił aerodynamicznych działających na rakietę podczas lotu. Pierwszym z nich

jest opór aerodynamiczny działający przeciwnie do kierunku lotu rakiety tj. przeciwnie do osi x układu lo-

kalnego rakiety. Siła oporu aerodynamicznego (ang. drag force) opisywana jest analogicznie do wzoru (2.2)

Fax = −QCaAref (2.4)

gdzie:

Ca - współczynnik siły oporu aerodynamicznego [·].
Drugim rodzajem jest siła normalna (ang. normal force) generowana przez powierzchnie sterowe, jak

i kadłub rakiety. Działa ona w punkcie parcia rakiety i jest skierowana prostopadle do korpusu rakiety.

Wartość siły normalnej także można obliczyć analogicznie do wzoru (2.2):

Fn = QCnAref , (2.5)

gdzie:

Cn - współczynnik siły normalnej [·].

Założono, że pochodna współczynnika siły normalnej obliczana po kącie natarcia jest liniowa dla

małych wartości kątów natarcia (ok. ±10◦) [22]. Zatem współczynnik siły normalnej użyty we wzorze (2.5)

może być opisany jako

Cn = Cnα · α, (2.6)

gdzie Cnα
jest pochodną współczynnika siły normalnej obliczaną po kącie natarcia rakiety

[
1

rad

]
.

Pochodną współczynnika siły normalnej użytą we wzorze (2.6) można obliczyć jako sumę pochodnych

współczynników siły normalnej dla każdego komponentu rakiety

Cnα = Cnαn
+ Cnαbc

+ Cnαbs
+ Cnαc

+ Cnαs
, (2.7)

gdzie:

Cnαn
- pochodna wsp. siły normalnej obliczona dla głowicy rakiety

[
1

rad

]
,

Cnαbc
- pochodna wsp. siły normalnej obliczona dla części kadłuba związanej z lotkami sterującymi

[
1

rad

]
,

Cnαbs
- pochodna wsp. siły normalnej obliczona dla części kadłuba związanej z lotkami stabilizują-

cymi
[

1
rad

]
,

Cnαc
- pochodna wsp. siły normalnej obliczona dla lotek sterujących

[
1

rad

]
,

Cnαs
- pochodna wsp. siły normalnej obliczona dla lotek stabilizujących

[
1

rad

]
.

Pochodne współczynników siły normalnej każdego z komponentów są możliwe do wyznaczenia w sposób

analityczny. W przypadku głowicy rakiety przyjmuje ona postać [34, 11]

Cnαn
= 2 · sinα

α
, (2.8)

a dla fragmentów kadłuba ma on postać [34]

Cnαb
= 1.1

dref
Aref

l · sinα
α

, (2.9)

2.2. Parametry modelu rakiety - wyprowadzenie zależności 9

gdzie l [m] jest długością danej sekcji kadłuba, a dla zestawu powierzchni sterowych można ją obliczyć

ze wzoru [34]

Cnαf
=

(
1 +

rt
s+ rt

)


(
N∑

k=1

sin2 Λk

)
Cnα1

, N = 1, 2

1.5Cnα1

(
1− 0.15 cos2

(
3

2
Λ1

))
, N = 3

2Cnα1

(
1− 0.06 cos2 (2Λ1)

)
, N = 4

, (2.10)

gdzie:

Cnα1
- pochodna wsp. siły normalnej obliczana dla pojedynczej lotki

[
1

rad

]
,

N - liczba lotek danego typu [·],
Λk - kąt pomiędzy przepływem powietrza prostopadłym do kadłuba a k-tą lotką [rad],

rt - promień kadłuba rakiety [m].

Wartość współczynnika Cnα1
wykorzystana we wzorze (2.10) jest zależna m.in. od prędkości rakiety

wyrażonej w liczbie Macha. Można ją wyznaczyć, korzystając z zależności [34]

Cnα1
=

2π s2

Aref

1 +

√
1 +

(
s2

√
|M2−1|

Afin cos Γc

)2
, (2.11)

gdzie:

M - liczba Macha, [·],
Afin - powierzchnia lotki

[
m2
]
.

Liczbę Macha definiuje się jako stosunek prędkości rakiety względem powietrza do aktualnej prędkości

dźwięku

M =
vm
vs
, (2.12)

gdzie vs
[
m
s

]
jest aktualną prędkością dźwięku.

Aktualna prędkość dźwięku została wyznaczona, korzystając ze standardowego modelu atmosfery

ISA [18]. Zależy ona od aktualnej temperatury powietrza i można ją opisać wzorem

vs = vs0

√
T

T0
, (2.13)

gdzie:

vs0 = 340, 3 m
s - wartość prędkości dźwięku w atmosferze standardowej na wysokości morza,

T0 = 288, 15K - temperatura w atmosferze standardowej na wysokości morza,

T - temperatura powietrza [K].

Temperatura powietrza T na danej wysokości w modelu atmosfery standardowej może zostać wyznaczona

jako

T = T0 + γh, (2.14)

gdzie:

γ = −6.5 · 10−3 K
m - pionowy gradient temperaturowy do wysokości 11 km w modelu atmosfery standar-

dowej.

Przyjęcie liniowej zależności temperatury od wysokości lotu jest prawdziwe tylko do wysokości ok. 11 km

tj. do osiągnięcia górnej granicy troposfery [18]. Nie jest to jednak ograniczenie na potrzeby tej pracy,

ponieważ rozważany typ rakiet nie wznosi się na tak duże wysokości.

Wykorzystując model atmosfery standardowej ISA, wyznaczona została także zależność gęstość po-

wietrza w zależności od wysokości [18]:

ρ = ρ0

(
1− γ

T0
h

) g
R·γ −1

, (2.15)

10 Równania ruchu rakiety

gdzie:

g = 9, 81 m
s2 - przyspieszenie grawitacyjne,

R = 287, 0529 m2

s2 K - stała gazowa,

ρ0 = 1, 225 kg
m3 - gęstość powietrza na poziomie morza.

Mając obliczone pochodne współczynników siły normalnej dla każdego komponentu rakiety, możliwe

jest wyznaczenie punktu przyłożenia tej siły tj. środka parcia rakiety. Odległość środka parcia od czubka

rakiety jest średnią ważoną odległości środków parcia poszczególnych komponentów od czubka rakiety,

gdzie wagami są wartości pochodnych współczynników siły normalnej dla danych komponentów (obliczone

na podstawie wzorów (2.8)–(2.10)) [34]

xcp =
xcpnCnαn

+ xcpbc
Cnαbc

+ xcpbs
Cnαbs

+ xcpcCnαc
+ xcpsCnαs

Cnαn
+ Cnαbc

+ Cnαbs
+ Cnαbs

+ Cnαc

, (2.16)

gdzie:

xcpn
- odległość środka parcia głowicy rakiety od czubka [m],

xcpbc
- odległość środka parcia części korpusu rakiety związanej z lotkami sterującymi od czubka [m],

xcpbs
- odległość środka parcia części korpusu rakiety związanej ze statecznikami od czubka [m],

xcpc
- odległość środka parcia lotek sterujących od czubka [m],

xcps
- odległość środka parcia stateczników od czubka [m].

Odległość środka parcia głowicy rakiety od jej czubka możliwa jest do wyznaczenia za pomocą

wzoru [34]

xcpn = ln − Vn
πr2t

, (2.17)

gdzie:

ln - długość głowicy [m],

Vn - objętość głowicy
[
m3
]
.

Założono, że głowica rakiety ma kształt połowy elipsoidy o długościach półosi równych rt, rt oraz ln.

Zatem objętość głowicy wykorzystana we wzorze (2.17) można wyrazić jako

Vn =
1

2
· 4
3
πlnrtrt =

2

3
πlnr

2
t . (2.18)

Odległość środka parcia od początku każdej z części kadłuba rakiety znajduje się w połowie ich

długości [34]. Zatem uwzględniając położenie fragmentów kadłuba można zapisać odległość ich środków

parcia od czubka rakiety jako

xcpbc
= ln +

1

2
lc, (2.19)

xcpbs
= ln + lc +

1

2
ls, (2.20)

gdzie lc [m] oraz ls [m] są długościami części kadłuba związanych z odpowiednio lotkami sterującymi

i statecznikami.

Odległość środka parcia ruchomych powierzchni sterowych i stateczników od początków ich podstaw

stykających się kadłubem można wyznaczyć ze wzoru [34]

xcpf
=
xt
3

Cr + 2Ct

Cr + Ct
+

1

6

C2
r + C2

t + CrCt

Cr + Ct
,

a uwzględniając położenie lotek względem czubka uzyskamy zależności

xcpc = ln + xc +
xtc
3

Crc + 2Ctc

Crc + Ctc

+
1

6

C2
rc + C2

tc + CrcCtc

Crc + Ctc

, (2.21)

xcps
= ln + lc + xs +

xts
3

Crs + 2Cts

Crs + Cts

+
1

6

C2
rs + C2

ts + CrsCts

Crs + Cts

, (2.22)

2.3. Wyprowadzenie równań dla ruchu postępowego 11

gdzie:

xtc , xts - odległość xt odpowiednio dla lotek sterujących i stateczników [m],

Crc , Crs - długość podstawy Cr odp. dla lotek sterujących i stateczników [m],

Ctc , Cts - długość podstawy Ct odp. dla lotek sterujących i stateczników [m].

2.3 Wyprowadzenie równań dla ruchu postępowego

Równania opisujące ruch postępowy rakiety podczas lotu wyprowadzono na podstawie [17]. Można je

opisać, korzystając z II zasady dynamiki Newtona opisanej zależnością

F = ma, (2.23)

gdzie:

F - wypadkowa siła działająca na ciało w danej osi [N],

a - wypadkowe przyspieszenie ciała wzdłuż danej osi
[
m
s2

]
,

m - masa rozpatrywanego ciała [kg].

Ruch ciała sztywnego można rozpatrzeć jako ruch nieskończenie wielu punktów materialnych, z któ-

rych składa się to ciało. Rozpatrzono ruch przykładowego punktu materialnego p o współrzędnych

(xp, yp, zp) w układzie bryły sztywnej z rys. 2.4 i masie elementarnej δm. Prędkości poruszania się

p(xp, yp, zp)

vp, ayp

y
q, Ly

środek ciężkości

o

up, axp

wp, azp

x

z

u, Fx

v, Fy

w, Fz

p, Lx

r, Lz

punkt materialny p o masie elementarnej δm

Rysunek 2.4: Ruch bryły sztywnej opisany w jej lokalnym układzie współrzędnych (za pracą [17])

ciała wzdłuż osi x, y, z układu zostały oznaczone odpowiednio jako u, v, w, a siły działające wzdłuż

tych osi jako Fx, Fy, Fz. Prędkości kątowe obrotu wokół tych samych osi oznaczono za pomocą p, q, r,

a momenty sił jako Lx, Ly, Lz. Wartości składowych prędkości poruszania się punktu p względem układu

współrzędnych ciała zostały oznaczone jako up, vp, wp, a przyspieszenia jako axp
, ayp
, azp .

Wartości prędkości up, vp, wp można zdefiniować jako sumę prędkości poruszania się punktu p wzglę-

dem osi układu współrzędnych ciała oraz prędkości wynikającej z obracania się rozpatrywanego ciała

12 Równania ruchu rakiety

wokół osi x, y, z 
up = ẋp − ryp + qzp,

vp = ẏp − pzp + rxp,

wp = żp − qxp + pyp.

Jednak ze względu na założenie, że rozpatrywane ciało jest bryłą sztywną, można uznać, że p nie porusza

się względem środka ciężkości, zatem

ẋp = ẏp = żp = 0,

więc 
up = −ryp + qzp,

vp = −pzp + rxp,

wp = −qxp + pyp.

(2.24)

W sposób analogiczny można zdefiniować wartości składowych przyspieszenia punktu p
axp

= u̇p − rvp + qwp,

ayp
= v̇p − pwp + rup,

azp = ẇp − qup + pvp.

(2.25)

Uwzględniając poruszanie się ciała względem układu lokalnego, można zapisać, że wartości składowych

prędkości punktu p w układzie ustalonym są równe
u′p = u+ up = u− ryp + qzp,

v′p = v + vp = v − pzp + rxp,

w′
p = w + wp = w − qxp + pyp.

(2.26)

Zatem wartości składowych przyspieszeń w układzie ustalonym na podstawie wzoru (2.25) są równe
ax = u̇′p − rv′p + qw′

p,

ay = v̇′p − pw′
p + ru′p,

az = ẇ′
p − qu′p + pv′p.

(2.27)

Różniczkując obustronnie równanie (2.26), pamiętając, że rozpatrywane ciało jest bryłą sztywną otrzy-

mujemy 
u̇′p = u̇− ṙyp + q̇zp,

v̇′p = v̇ − ṗzp + ṙxp,

ẇ′
p = ẇ − q̇xp + ṗyp.

(2.28)

Podstawiając równania (2.26) i (2.28) do równania (2.27) otrzymujemy
ax = u̇− rv + qw − xp

(
q2 + r2

)
+ yp (pq − ṙ) + zp (pr + q̇) ,

ay = v̇ − pw + ru+ xp (pq + ṙ)− yp
(
p2 + r2

)
+ zp (qr − ṗ) ,

az = ẇ − qu+ pv + xp (pr − q̇) + yp (qr + ṗ)− zp
(
p2 + q2

)
.

(2.29)

Korzystając z II zasady dynamiki Newtona (2.23) można zapisać, że wypadkowe siły działające

na ciało w osiach x, y i z są sumą sił działających w tych osiach na każdy punkt materialny tego

ciała 
Fx =

∑
δmax,

Fy =
∑

δmay,

Fz =
∑

δmaz.

(2.30)

2.3. Wyprowadzenie równań dla ruchu postępowego 13

Po podstawieniu wartości przyspieszeń z równania (2.29) do równania (2.30) oraz zakładając, że układ

współrzędnych ciała ma swój początek w środku ciężkości∑
δmxp =

∑
δmyp =

∑
δmzp = 0, (2.31)

otrzymano 
Fx = m (u̇− rv + qw) ,

Fy = m (v̇ − pw + ru) ,

Fz = m (ẇ − qu+ pv) .

(2.32)

Po przekształceniu równań (2.32) otrzymujemy równania opisujące ruch postępowy rakiety
u̇ =

Fx

m
− qw + rv,

v̇ =
Fy

m
− ru+ pw,

ẇ =
Fz

m
− pv + qu.

(2.33)

Siła wypadkowa działająca na rakietę składa się z siły aerodynamicznej, siły ciągu generowanej przez

silnik oraz siły grawitacji. Siła aerodynamiczna składa się z siły oporu aerodynamicznego wyznaczanego

za pomocą równania (2.4) oraz siły normalnej wyznaczonej za pomocą (2.5). Składowe siły wypadkowej

są zatem równe

Fx = Fax + Fpx + Fgx ,

Fy = Fny + Fpy + Fgy ,

Fz = Fnz
+ Fpz

+ Fgz ,

(2.34)

gdzie:

Fny
, Fnz

- składowe siły normalnej działające w osiach y i z [N],

Fpx
, Fpy
, Fpz

- składowe siły ciągu silnika [N],

Fgx , Fgy , Fgz - składowe siły grawitacji [N].

Wartości składowych siły normalnej Fny , Fnz można wyznaczyć rzutując siłę normalną Fn na osie y

oraz z układu lokalnego rakiety

Fny
= −Fn

v√
v2 + w2

,

Fnz
= Fn

w√
v2 + w2

.
(2.35)

Założono, że silnik jest umiejscowiony współosiowo z kadłubem rakiety. Można zatem przyjąć, że siła

ciągu generowana przez silnik działa na rakietę wyłącznie w osi x, zatem

Fpx = Fp,

Fpy
= 0N,

Fpz
= 0N.

(2.36)

Wektor siły grawitacji został zdefiniowany za pomocą przekształcenia siły grawitacji działającej

w układzie globalnym do układu lokalnego rakiety Fgx

Fgy

Fgz

 = T g
l

 Fgxg

Fgyg

Fgzg

 , (2.37)

14 Równania ruchu rakiety

gdzie T g
l jest macierzą obrotu pomiędzy układem globalnym a układem lokalnym rakiety. Macierz T

g
l jest

ortogonalna, a więc T g
l =

(
T l
g

)T
. Macierz obrotu T l

g jest złożeniem obrotów o wartości kątów Eulera, jakie

należy wykonać, aby orientację układu lokalnego rakiety przekształcić w orientację układu globalnego [17]

T l
g =

 1 0 0

0 cosφ sinφ

0 − sinφ cosφ


 cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ


 cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 ,

T l
g =

 cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ

cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ

 . (2.38)

Korzystając z wartości prędkości rotacji rakiety wokół osi lokalnego układu współrzędnych, opisanych

za pomocą pochodnych wartości kątów Eulera [17]:


p = φ̇− ψ̇ sin θ,

q = θ̇ cosφ+ ψ̇ sinφ cos θ,

r = ψ̇ cosφ cos θ − θ̇ sinφ,

co można przekształcić do postaci (zakładając, że cos θ ̸= 0):


φ̇ = p+ tgθ (q sinφ+ r cosφ) ,

θ̇ = q cosφ− r sinφ,

ψ̇ =
q sinφ+ r cosφ

cos θ
.

(2.39)

Całkując obustronnie równanie (2.39) można uzyskać równania opisujące wartości kątów Eulera wyko-

rzystanych w równaniu (2.38):



φ =

∫ t

0

p+ tgθ (q sinφ+ r cosφ) dτ,

θ =

∫ t

0

q cosφ− r sinφ dτ,

ψ =

∫ t

0

q sinφ+ r cosφ

cos θ
dτ.

(2.40)

2.4 Wyprowadzenie równań dla ruchu obrotowego

Równania dla ruchu obrotowego zostały, analogicznie do równań ruchu postępowego, wyznaczone

na podstawie [17]. Wypadkowe momenty sił działające na ciało względem osi x, y i z można wyznaczyć

jako sumę momentów sił generowanych przez wypadkowe siły działające na punkty materialne

Lx =
∑

δmazyp −
∑

δmayzp,

Ly =
∑

δmaxzp −
∑

δmazxp,

Lz =
∑

δmayxp −
∑

δmaxyp,

2.4. Wyprowadzenie równań dla ruchu obrotowego 15

a po podstawieniu wartości składowych przyspieszeń z równania (2.29), uwzględnieniu równania (2.31)

oraz wykonaniu przekształceń otrzymujemy

Lx = ṗ
∑

δm
(
y2p + z2p

)
+ qr

∑
δm
(
y2p − z2p

)
+
(
r2 − q2

)∑
δmypzp

− (pq + ṙ)
∑

δmxpzp + (pr − q̇)
∑

δmxpyp,

Ly = q̇
∑

δm
(
x2p + z2p

)
+ pr

∑
δm
(
x2p − z2p

)
+
(
p2 − r2

)∑
δmxpzp

− (qr + ṗ)
∑

δmxpyp + (pq − ṙ)
∑

δmypzp,

Lz = ṙ
∑

δm
(
x2p + y2p

)
− pq

∑
δm
(
x2p − y2p

)
+
(
q2 − p2

)∑
δmxpyp

− (pr + q̇)
∑

δmypzp + (qr − ṗ)
∑

δmxpzp.

(2.41)

Można zauważyć, że wyrażenia w równaniu (2.41) z symbolem sumy
∑
są momentami bezwładności.

Zatem można zapisać równanie (2.41) w uproszczonej formie

Lx = ṗIx + qr (Iy − Iz) +
(
r2 − q2

)
Ixy − (pq + ṙ) Ixz + (pr − q̇) Ixy,

Ly = q̇Iy + pr (Ix − Iz) +
(
p2 − r2

)
Ixz − (qr + ṗ) Ixy + (pq − ṙ) Iyz,

Lz = ṙIz + pq (Iy − Ix) +
(
q2 − p2

)
Ixy − (pr + q̇) Iyz + (qr − ṗ) Ixz,

(2.42)

gdzie:

Ix, Iy, Iz - momenty bezwładności
[
kgm2

]
,

Ixy, Ixz, Iyz - momenty dewiacyjne
[
kgm2

]
.

Zakładając, że ruch rakiety rozważany jest względem jej środka ciężkości, a osie układu współrzędnych

rakiety pokrywają się głównymi osiami bezwładności, można pominąć momenty dewiacyjne [17]

Lx = ṗIx + qr (Iy − Iz) ,

Ly = q̇Iy + pr (Ix − Iz) ,

Lz = ṙIz + pq (Iy − Ix) .

(2.43)

Zatem równania opisujące ruch obrotowy rakiety można zapisać jako

ṗ =
Lx − qr(Iz − Iy)

Ix
,

q̇ =
Ly − rp(Ix − Iz)

Iy
,

ṙ =
Lz − pq(Iy − Ix)

Iz
.

(2.44)

Momenty sił Lx, Ly, Lz powstają w wyniku działania sił aerodynamicznych i siły ciągu silnika

Lx = Lax
+ Lpx

,

Ly = Lay + Lpy ,

Lz = Laz
+ Lpz

,

gdzie Lax
, Lay
, Laz

są momentami sił aerodynamicznych, a Lpx
, Lpy
, Lpz

to momenty sił wywołane przez

siłę ciągu. Ze względu na współosiowe umiejscowienie silnika rakiety względem jej kadłuba momenty sił

wywołane siłą ciągu są równe 0. Założono, że momenty bezwładności względem osi y i z dla analizowanej

rakiety są sobie równe

Iy = Iz.

16 Równania ruchu rakiety

Zatem ostatecznie można zapisać 

ṗ =
Lax

Ix
,

q̇ =
Lay − rp(Ix − Iz)

Iy
,

ṙ =
Laz

− pq(Iy − Ix)

Iz
.

(2.45)

Moment siły Lax w równaniu (2.45) tj. moment siły aerodynamicznej działający w osi podłużnej

można opisać jako różnicę momentu wymuszającego ruch obrotowy, generowanego przez każdy z zestawów

lotek oraz momentów tłumiących ten ruch. Można go obliczyć analogicznie do równania (2.3) korzystając

ze współczynników wspomnianych momentów sił [34]

Lax
= Q

(
Clf − Cld

)
Arefdref , (2.46)

gdzie:

Clf = Clfc
+Clfs

- suma współczynników momentów forsujących w osi podłużnej obu zestawów lotek [·],
Cld = Cldc

+Clds
- suma współczynników momentów tłumiących w osi podłużnej obu zestawów lotek [·].

Współczynniki forsujących momentów sił w równaniu (2.46) generowanych przez lotki sterujące i

stabilizujące opisać można równaniem [34]

Clf =
N (yMAC − rt)Cnα1

δ

dref
, (2.47)

gdzie:

N - liczba lotek danego typu [·],
yMAC - długość średniego ramienia aerodynamicznego [m],

δ - kąt wychylenia lotki [rad].

Długość średniego ramienia aerodynamicznego yMAC (tj. odcinka MAC na rys. 2.3) w przypadku lotek

o kształcie trapezu można wyznaczyć na podstawie długości ich podstaw oraz ich rozpiętości [34]

yMAC =
s

3
· Cr + 2Ct

Cr + Ct
. (2.48)

Współczynniki tłumiących momentów sił w osi podłużnej są zależne m.in. od aktualnej prędkości

rotacji rakiety p. Można je wyznaczyć, korzystając z równania [34]

Cld =
2πNp

Arefdrefvm
√

|M2 − 1|

(
Cr + Ct

2
r2t s+

Cr + 2Ct

3
rts

2 +
Cr + 3Ct

12
s3
)
. (2.49)

Momenty działające w osi poprzecznej i pionowej są wynikiem działania składowych siły normal-

nej (2.35) w osiach y i z oraz momentu siły tłumiącego ruch obrotowy wokół tych osi. Można opisać je

za pomocą równań
Lay = −Fnz (xcp − xcg) + Ldy ,

Laz
= −Fny

(xcp − xcg) + Ldz
.

(2.50)

gdzie Ldy
i Ldz

[Nm] są tłumiącymi momentami sił w osiach pionowej oraz poprzecznej, które mają zawsze

przeciwny znak do prędkości rotacji w odpowiadającej im osi. Długość ramienia, na jakim działają te siły

jest równa różnicy odległości środka parcia xcp i środka ciężkości xcg od czubka rakiety (tj. odległości

środka parcia od środka ciężkości).

Na momenty sił Ldy
i Ldz

składają się tłumiące momenty sił generowane przez kadłub rakiety, jak

i tłumiące momenty sił generowane przez same powierzchnie sterowe. Tłumiące momenty sił generowane

przez kadłub rakiety można opisać równaniami [34]

Ldyb
= 0, 275 · ρrtl4q2,

Ldzb
= 0, 275 · ρrtl4r2,

(2.51)

2.4. Wyprowadzenie równań dla ruchu obrotowego 17

gdzie l [m] jest długością całego kadłuba rakiety. Natomiast tłumiące momenty sił generowane przez

powierzchnie sterowe można wyznaczyć, korzystając ze współczynników [34]

Ldyf
= QCdy

Arefdref ,

Ldzf
= QCdzArefdref ,

(2.52)

gdzie:

Cdy
= 0.6 · NAfinκ

3

Arefdref
· q

2

v2m
,

Cdz
= 0.6 · NAfinκ

3

Arefdref
· r

2

v2m
,

(2.53)

przy czym κ [m] jest odległością danego zestawu lotek od środka ciężkości rakiety. Momenty Ldyf
i Ldzf

są

obliczane dla każdego z zestawu lotek (sterujących i stabilizujących) osobno, a następnie są one dodawane.

Rozdział 3

Projekt układu sterowania

3.1 Definicja zadania sterowania

Za obiekt sterowania uważany jest model ruchu wirowego rakiety wraz z układem wykonawczym.

W związku z tym obiekt jest złożeniem dwóch członów.

Uwzględniając równanie (2.1) w (2.46) oraz podstawiając do równania przyspieszenia rotacji ṗ (2.45)

zostaje otrzymane:

ṗ =
ρv2m

(
Clf − Cld

)
Arefdref

2Ix
. (3.1)

Widoczne jest, że przyspieszenie rotacji zależy nieliniowo od prędkości rakiety. Poza tym jest zależne

od nieznanych błędów montażu stateczników, nieliniowych pochodnych współczynników siły normalnej

liczonej dla kąta natarcia zdefiniowanej dla pojedynczej wybranej lotki (2.11) i współczynników momen-

tów tłumiących (2.49). Ponadto przyspieszenie kątowe obliczane jest na podstawie parametrów geome-

trycznych rakiety i lotek (2.47, 2.48) oraz zakłada się, że momenty bezwładności względem osi y i z

układu współrzędnych rakiety są sobie równe, dzięki czemu zależności skrośne prędkości dla pionowej

i poprzecznej osi są pomijane. Model ruchu wirowego rakiety posiada, więc dużą niepewność strukturalną

i parametryczną.

Zaprojektowany układ wykonawczy poruszający lotkami sterującymi jest inercją pierwszego rzędu

z opóźnieniem czasowym. W rezultacie człon wykonawczy jest nieminimalnofazowy oraz rozszerza rząd

obiektu sterowania do drugiego rzędu.

W konsekwencji człon sterowania (3.1) wraz z elementem wykonawczym jest nieliniowy, a na obiekt

sterowania działa zmienne zaburzenie. Jako zadanie sterowania zdefiniowano stabilizację zerowej prędkości

rotacji. Jest to, więc zadanie regulacji stałowartościowej. Zakres prędkości rotacji, dla którego uznawane

jest, że sterownik spełnił zadanie sterowania wynosi ±20
◦

s wokół wartości zadanej. Został on wyznaczony

na podstawie efektywności żyrolotek, czyli mechanicznego odpowiednika sterowania prędkością rotacji.

Wspomniana alternatywna metoda sterowania pozwala na uzyskanie minimalnej prędkości rotacji równej

±20
◦

s [10] [29]. Założony czas ustalania prędkości rotacji dla lotu rakiety ze sterowaniem włączonym

od momentu startu wynosi Ts ≤ 2s, gdzie Ts jest czasem ustalania odpowiedzi układu regulacji. Został

on wyznaczony na podstawie znajomości czasu wypalenia silnika.

3.2 Uzasadnienie wyboru algorytmu sterowania

W związku z charakterem obiektu sterowania oraz działających zakłóceń stwierdzono, że podsta-

wowe sterowniki (np. P, PI, PD, PID) mogą zapewnić nieakceptowalną jakość regulacji. Postanowiono

wykorzystać adaptacyjną metodę sterowania. Podejście adaptacyjne dla wyżej określonego zadania ste-

rowania wykorzystywane jest w rozwiązaniach technologicznych stosowanych w sektorze wojskowym [36]

19

20 Projekt układu sterowania

[21] oraz lotniczym [13]. W celu uzasadnienia wyboru algorytmu sterowania porównana została metoda

szeregowania parametrów ze sterownikiem ADRC [41].

Szeregowanie parametrów jest metodą wyznaczania zestawów nastaw sterownika (np. P, PI, PD, PID)

dla wielu punktów pracy [26]. Wspomniane nastawy przestrajane są w zależności od aktualnego punktu

pracy układu. W konsekwencji konieczne jest wcześniejsze wyznaczenie dokładnych wartości parametrów

projektowych sterownika. Jedną z metod jest symulacyjny dobór nastaw sterownika. Wymaga to jednak

dokładnego symulatora.

ADRC jest sterownikiem działającym w torze zamkniętym, odpornym na niepewność strukturalną

i parametryczną obiektu oraz zakłócenia. Pozwala na adaptację do zmieniającej się dynamiki i zewnętrz-

nych zaburzeń [46].

Symulując rakietę, przyjmuje się określone uproszczenia i założenia, które nie odzwierciedlają do-

kładnie rzeczywistości. Jednym z takich założeń jest to, że zakłada się określoną wartość przekrzywienia

stateczników, która w rzeczywistości jest trudna lub niemożliwa do zmierzenia. Kolejnym przykładem

jest założenie stałego kierunku przepływu wiatru. Algorytm szeregowania parametrów wymaga wcze-

śniejszego wyznaczenia nastaw dla określonych punktów pracy. Można to wykonać symulacyjnie [44] lub

poprzez testy w tunelu przeskalowanego modelu rakiety [13]. W aspekcie różnych projektów rakiet wpro-

wadza to duży nakład pracy. W kontekście zmiennej szeregującej nastawy, którą w tym przypadku byłaby

liczba Macha lub prędkość rakiety oraz patrząc z perspektywy zadania sterowania, wykorzystanie tego

regulatora wymusza dokładny pomiar prędkości przepływu (np. za pomocą rurki Pitota). Dodatkowo

w zależności od dynamiki możliwe jest wyznaczenie od kilkunastu do kilkudziesięciu pakietów nastaw.

Powyższe wymogi komplikują implementacje oraz architekturę podzespołów elektronicznych. Sterownik

ADRC nie wymaga takiego nakładu pracy. Z racji tego, że pracuje on w torze zamkniętym oraz do-

staje aktualną wartość prędkości rotacji w czasie lotu rakiety, estymuje w czasie rzeczywistym działające

całkowite zaburzenie. Daje to elastyczność w projektowaniu różnych modeli rakiet przy użyciu kilku

parametrów projektowych [25] [41]. W związku z tym postanowiono wykorzystać sterownik ADRC.

3.3 Podstawy działania ADRC

Wybrany sterownik potrafi efektywnie kompensować wpływ niepewności modelu, jak i zaburzeń ze-

wnętrznych. Metodą uporania się ze wspomnianymi trudnościami jest estymacja całkowitego zaburzenia.

Dzięki temu można tak zaprojektować sygnał sterujący, by całkowite zaburzenie było efektywnie kom-

pensowane.

Przykładową dynamikę SISO (ang. single input single output) można rozpisać jako [31] :

y(n) + g(·) + F (y, ẏ...y(n−1), t, po) = bou+ d, b0 ̸= 0, (3.2)

gdzie: y - mierzalne wyjście, u - dostępne wejście sterujące, g(·) - dokładnie znany element modelu, d -
niemierzalne zewnętrzne zakłócenie, F (·) - liniowa lub nieliniowa funkcja o nieznanej strukturze i zależna
od nieznanych/niepewnych parametrów, b0 - nieznany/niepewny, rzeczywisty współczynnik skalujący

w torze wejścia sterującego. Następnie równanie (3.2) można zapisać następująco:

y(n) + g(·) = f(y, ẏ...y(n−1), t, po, u, d) + b̂u, (3.3)

gdzie: b̂ - zgrubna estymata wartości b0. Natomiast całkowite zaburzenie zdefiniowane jest jako:

f(y, ẏ...y(n−1), t, po, u, d) := −F (y, ẏ...y(n−1), t, po) + d+ (b0 − b̂u). (3.4)

W rezultacie działające zakłócenia oraz niepewności zebrane są w jedną funkcję f(·), która jest estymo-
wana w czasie rzeczywistym.

3.3. Podstawy działania ADRC 21

Następnie zakłada się, że w wybranej chwili czasowej estymata f̂ jest dostępna. Na tej podstawie

sygnał sterujący zdefiniowany jest jako [31] :

u ≜
u∗ − f̂

b̂
, (3.5)

gdzie u∗ jest sygnałem sterującym pętli zewnętrznej (rys. 3.1). Podstawiając równanie (3.5) do (3.3)

otrzymuje się:

yn + g(·) = u∗ + (f(·)− f̂)︸ ︷︷ ︸
ϵf

, (3.6)

gdzie: f(·) jest rzeczywistym całkowitym zaburzeniem, natomiast ϵf jest błędem estymacji zaburzenia.
Jeżeli estymata f̂ jest dobrze znana to ϵf = 0. Wówczas kompensacja jest idealna. W rzeczywistości

dąży się do jak najmniejszej wartości |ϵf | [31]. Wybrana struktura sterownika ADRC jest przedstawiona
na rys. 3.1. Uwzględnia ona opóźnienie czasowe układu wykonawczego poruszającego lotkami sterującymi

[35] oraz ograniczenie zakresu sygnału sterującego.

Układ
wykonawczy

Model ruchu
wirowego

rakiety

Obserwator
Luenbergera

stanu
rozszerzonego

Sterownik pętli
zewnętrznej

+- -+
Generator sygnałów

referencyjnych

Ograniczenie
sygnału

sterującego

Opóźnienie

sygnału

sterującego

u
y

Obiekt sterowania

Rysunek 3.1: Schemat blokowy ADRC

Wybrany sterownik składa się z dwóch pętli sterowania. Nadrzędna powiązana jest ze sterownikiem

konwencjonalnym (np. P/PI/PD/PID), podrzędna natomiast z pętlą kompensacji całkowitego zaburze-

nia [46].

Pętla podrzędna składa się przede wszystkim z wybranego liniowego obserwatora stanu rozszerzonego

[46] (LESO ang. Luenberger/Linear Extended State-Observer — rys. 3.1). LESO pozwala na estymację

aktualnie działającego całkowitego zaburzenia (f̂ na rys. 3.1) oraz stanu obiektu sterowania (y na rys. 3.1).

Zakłócenia działające na obiekt na rys. 3.1, oznaczone przez d1 oraz d2 jak i niepewności struktury modelu

układu wykonawczego oraz obiektu sterowania potraktowane są jako działające całkowite zaburzenie [46].

Dodatkowo ze względu na charakter układu wykonawczego zostało uwzględnione opóźnienie w sygnale

sterującym dla LESO (rys. 3.1) [35]. W obiekcie występuje również ograniczenie sygnału sterującego

wynikające z dopuszczalnego kąta wychylenia lotek sterujących. Z racji tego taka informacja przekazywana

jest również do obserwatora.

Pętla nadrzędna z wybranym sterownikiem posiada dodatkową opcję wyboru sygnału pomiarowego

lub też sygnału estymowanego ŷ. Dzięki tej możliwości w przypadku pomiarów z dużym szumem pomiaro-

wym istnieje możliwość wykorzystania estymowanej wartości y [23]. W wybranej strukturze zdecydowano

wykorzystać sygnał pomiarowy (rys. 3.1).

22 Projekt układu sterowania

Następnie zostaną wyprowadzone ogólne wzory umożliwiające projekt obserwatora stanu rozszerzo-

nego Luenbergera (LESO) zgodnie z [24]. Model obiektu opisany jest, więc następująco:

ẋ = Ax+Bu+Wḟ(·), y = Cx, (3.7)

gdzie: A jest macierzą stanu, B — macierzą wejść, C — macierzą wyjść, W — macierzą związaną z

określeniem wpływu pochodnej całkowitego zaburzenia ḟ(·). Korzystając z (3.7), równanie obserwatora
można zapisać następująco:

˙̂x = Ax̂+Bu+ L(y − ŷ), (3.8)

gdzie: L jest wektorem wzmocnień obserwatora, czyli parametrem projektowym, y jest mierzonym wyj-

ściem, a ŷ — wartością wyjścia estymowaną przez LESO. Na podstawie (3.7) dostosowując do przypadku

obserwatora, można podstawić do równania (3.8) oraz otrzymać:

˙̂x = (A− LC)x̂+Bu+ Ly. (3.9)

Wyznaczając macierz L korzysta się z klasycznego wyprowadzenia dla obserwatora Luenbergera.

W związku z tym nowa macierz stanu zdefiniowana jest jako:

H = A− LC, (3.10)

gdzie H ma być macierzą Hurwitza, w której wszystkie wartości własne leżą w lewej półpłaszczyźnie

zespolonej. Mając tak zdefiniowaną macierz H, zostaną ulokowane jej wartości własne:

det (λI −H) = (λ+ ω0)
n, (3.11)

gdzie: I oznacza macierz jednostkową, ω0 jest parametrem projektowym, który określa pasmo przeno-

szenia LESO, natomiast n jest rzędem obserwatora stanu rozszerzonego Luenbergera. Na tej podstawie

wyznaczana jest macierz wzmocnień obserwatora L.

Chcąc zaimplementować sterownik ADRC na mikrokontrolerze, potrzebna jest jego dyskretyzacja.

Wykorzystując metodę dyskretyzacji Eulera wprzód [47] równanie (3.8) zapisane zostanie jako:

x̂(n) = (I + TaA)︸ ︷︷ ︸
Ad

x̂(n− 1) + TaB︸︷︷︸
Bd

u(n− 1) + TaLC︸ ︷︷ ︸
Od

(ϵ(n− 1)), (3.12)

gdzie Ta oznacza okres próbkowania równań obserwatora, natomiast ϵ = y(n − 1) − ŷ(n − 1) . W celu

uzyskania dobrej jakości estymacji to znaczy otrzymania estymowanego całkowitego zaburzenia bliskiego

prawdziwemu całkowitemu zaburzeniu, należy zmniejszać Ta oraz zwiększać ω0.

3.4 Wyprowadzenie równań dla sterownika ADRC

Na początku wykorzystując wyprowadzone ogólne wzory, zostanie zaprojektowany LESO. Układ wy-

konawczy poruszający lotkami sterującymi został zdefiniowany jako obiekt inercyjny pierwszego rzędu

bez opóźnienia czasowego (na podstawie [35]):

δ

δz
=

k

sT + 1
, (3.13)

gdzie: δz = u jest pozycją zadaną, a δ rzeczywistym wychyleniem lotek sterujących. Z racji tego można

zapisać:

δ̇ =
kδz
T

− δ

T
. (3.14)

3.4. Wyprowadzenie równań dla sterownika ADRC 23

Następnie równianie przyspieszenia rotacji przy założeniu, że rakieta jest symetryczna, to znaczy za-

leżności skrośne prędkości w osi pionowej oraz poprzecznej, nie mają wpływu na przyspieszenie rotacji,

równanie (3.1) rozpisane zostanie następująco:

ṗIx +

(
ρv2mArefdrefClds

2
+
ρv2mArefdrefCldc

2

)
︸ ︷︷ ︸

C(vm)

p−
ρv2mArefdrefClfs

2
δs︸ ︷︷ ︸

τd(δs,vm)

=
ρv2mArefdrefClfc

2︸ ︷︷ ︸
µ(vm)

δ, (3.15)

co można przepisać jako:

ṗ = −C(vm)

Ix
p+

τd
Ix

+
µ(vm)

Ix︸ ︷︷ ︸
b0

δ. (3.16)

Następnie równianie (3.16) zostanie zapisane według (3.3):

ṗ = b0δ + f0(p, τd, vm), (3.17)

gdzie f0(p, τd, vm) = τd
Ix

− C(vm)
Ix

p. Następnie równianie (3.17) zostanie zróżniczkowane stronami:

p̈ = ḃ0δ + b0δ̇ + ḟ0(·). (3.18)

Następnie podstawiając równanie (3.14) do (3.18) zostanie otrzymane:

p̈ =
b0k

T︸︷︷︸
b1

δz + f1(ḃ0, δ, b0, f0(·)) (3.19)

gdzie f1(ḃ0, δ, b0, f0(·)) = ḃ0δ − b0δ
T + ḟ0(·). Co ostatecznie może być zapisane jako:

p̈ = [b1δz + f1(·)− b̂u]︸ ︷︷ ︸
F (b1,δz,f1(·))

+b̂u, (3.20)

gdzie całkowite zaburzenie zdefiniowane jest jako F (b1, δz, f1(·)) = b1δz + f1(·)− b̂u. Definiując zmienne

stanu jako:

x1 = p x2 = ṗ x3 = F (·),

równianie dynamiki stanu rozszerzonego zostanie zapisane w postaci (3.7):

ẋ =

 ṗ

p̈

Ḟ (·)

 =

0 1 0

0 0 1

0 0 0


︸ ︷︷ ︸

A

·

x1x2
x3


︸ ︷︷ ︸

x

+

0b̂
0


︸︷︷︸
B

u+

00
1


︸︷︷︸
w

·Ḟ (·), (3.21)

y =
[
1 0 0

]
︸ ︷︷ ︸

C

x. (3.22)

Chcąc uzyskać równanie obserwatora, macierze A, B oraz równanie y podstawione zostanie do równa-

nia (3.8). W celu uzyskania pełnego wyprowadzenia równania obserwatora zdefiniowana zostanie macierz

L na podstawie równań (3.9), (3.10) oraz (3.11), gdzie n=3:

L =

3ω0

3ω2
0

ω3
0

 . (3.23)

Następnie zaprojektowana zostanie pętla zewnętrzna. Ze względu na to, że jest to obiekt drugiego

rzędu, postanowiono wykorzystać sterownik PD. Dzięki temu umożliwione zostało przyspieszenie reakcji

24 Projekt układu sterowania

układu regulacji oraz modyfikacja tłumienia. W związku z tym obiekt sterowania przy założeniu idealnej

kompensacji można zdefiniować jako obiekt drugiego rzędu z członem opóźniającym:

Y (s) = G∗(s) · U∗(s) =
e−sT0U∗(s)

s2
, (3.24)

gdzie U(s)∗ jest transformatą Laplace’a sygnału u∗ z rys. 3.1, a T0 oznacza opóźnienie członu wykonaw-

czego. Zakładając f̂(·) ≡ f(·), co oznacza, że estymowane całkowite zaburzenie jest równe prawdziwemu
całkowitemu zaburzeniu, zdefiniowano sygnał sterujący u∗ za sterownikiem PD:

u∗(t) = k1(ẏr − ẏ) + k0(yr − y), (3.25)

gdzie k1 oznacza nastawę członu różniczkującego, natomiast k0 nastawę członu proporcjonalnego. Zada-

niem sterowania jest zerowanie prędkości kątowej, wobec tego można zdefiniować yr = 0 oraz ẏr = 0.

Na tej podstawie równanie (3.25) zostanie zapisane w dziedzinie Laplace’a w postaci:

U∗(s) ≜ −k1sY (s)− k0Y (s). (3.26)

Dalej podstawiając (3.24) do (3.26) po uporządkowaniu otrzymuje się:

s2Y (s) = [−k1sY (s)− k0Y (s)]e−sT0 . (3.27)

Człon e−sT0 jest aproksymowany wyrażeniem (1−sT0). Podstawiając wspomnianą aproksymację do (3.27)
po uporządkowaniu, otrzymano:

s2Y (s) +
k1 − k0T0
1− k1T0︸ ︷︷ ︸

k∗
1

sY +
k0

1− k1T0︸ ︷︷ ︸
k∗
0

Y = 0, (3.28)

gdzie stosując metodę lokowania biegunów [32] [23]:

k∗1 = 2ξωc, (3.29)

oraz

k∗0 = ω2
c , (3.30)

gdzie ξ = (0; 1] oznacza współczynnik tłumienia, natomiast ωc > 0 pulsację nietłumionych drgań wła-

snych układu sterowania, pulsację pętli zewnętrznej. Przy czym ξ oraz ωc są parametrami projektowymi.

Następnie rozwiązanie układu równań (3.29) oraz (3.30) pozwala wyznaczyć nastawy sterownika PD:

k1 =
2ξωc + T0ω

2
c

1 + 2T0ξωc + T 2
0 ω

2
c

, (3.31)

k0 =
ω2
c

1 + 2T0ξωc + T 2
0 ω

2
c

. (3.32)

Mając zdefiniowaną strukturę sterownika, omówione zostaną jego nastawy. Dla pętli adaptacji dobie-

rane są wartości b̂ oraz pasma przepustowego ω0 obserwatora LESO. Wartość b̂ jest zgrubną, oszacowaną

wartością wzmocnienia toru sterowania. W związku z tym, że jest to wartość zależna od zmieniających

się parametrów, jej wartość musi mieścić się w obliczonym zakresie. W przypadku wyznaczonych rów-

nań definiuje się b̂, a następnie oblicza najmniejszą i największą możliwą wartość. W przypadku ω0 im

większa wartość, tym lepsza jakość estymacji oraz w konsekwencji bardziej efektywne sterowanie. Ograni-

czenie dla tego parametru wiąże się z tym, że przy dużych wartościach ω0 może pojawić się niepożądany

efekt nadmiernego wzmacniania szumów pomiarowych [23]. Z racji tego, że obiekt sterowania jest zło-

żeniem układu wykonawczego oraz procesu zmiany prędkości wirowania rakiety, w konsekwencji obiekt

3.4. Wyprowadzenie równań dla sterownika ADRC 25

jest drugiego rzędu z opóźnieniem. W związku z tym nałożone są dodatkowe ograniczenia dla nastaw pę-

tli zewnętrznej. Pasmo przenoszenia musi zostać dobrane bardziej konserwatywnie oraz wzrasta czułość

systemu na dobór wartości b̂ [43]. Pasmo pętli zewnętrznej ωc musi być mniejsze niż pasmo obserwatora

ω0. Dzięki temu pętla adaptacji jest szybsza niż pętla zewnętrzna.

Dodatkowo na podstawie (3.28) można wyznaczyć następujące ograniczenia dla nastaw regulatora PD:

1− k1T0 > 0 ⇒ 1

T0
> k1 (3.33)

drugie założenie, przy spełnieniu (3.33):

k0
1− k1T0

> 0 ⇒ ko > 0 (3.34)

oraz trzecie:

k1 − k0T0 > 0 ⇒ k1 > k0T0. (3.35)

Wyznaczone zależności nastaw dla LESO, oraz regulatora PD stanowią podstawę strojenia ADRC za-

pewniającą stabilność układu.

Rozdział 4

Implementacja układu sterowania i modelu

rakiety w środowisku MATLAB/Simulink

4.1 Implementacja modelu rakiety

Poniżej opisano sposób implementacji modelu rakiety w środowisku MATLAB/Simulink na podstawie

równań przedstawionych w rozdziale 2 oraz parametrów fizycznych wykorzystanej rakiety.

Do wykonania modelu, poza parametrami geometrycznymi rakiety, wykorzystano charakterystyki oraz

przebiegi niektórych parametrów wygenerowane przez program OpenRocket [7]. Jest to jeden z najczę-

ściej używanych programów symulujących lot rakiety, wykorzystywanych przez zespoły zajmujące się

budową rakiet sportowych. Pozwala on m.in. na wyznaczanie zapasu stabilności rakiety, wysokości apo-

geum, maksymalnej prędkości rakiety podczas lotu. Umożliwia także wyznaczenie przebiegów niektórych

zmiennych w czasie parametrów rakiety.

Do parametrów wygenerowanych przy użyciu programu OpenRocket należą:

• charakterystyka silnika w postaci zależności wartości siły ciągu od czasu,

• masa rakiety, położenie środka ciężkości oraz momenty bezwładności, które są zmienne w czasie
ze względu na wypalanie się paliwa,

• współczynnik siły oporu aerodynamicznego.

4.1.1 Parametry fizyczne wykorzystanej rakiety

Kadłub wykorzystanej w symulacji rakiety składa się z głowicy oraz dwie części kadłuba, związanych

z lotkami sterującymi i stabilizującymi. Jego średnica jest równa 7, 8 ·10−2 m. Głowica ma kształt połowy

elipsoidy, a jej długość wynosi 2 · 10−1 m. Długości każdej z sekcji kadłuba jest równa 5, 16 · 10−1 m.

Zamodelowana rakieta wyposażona jest w cztery lotki stabilizujące o kształcie trapezu, umiejscowione

w tylnej części kadłuba rakiety. Kształt każdego z nich można opisać korzystając z parametrów przedsta-

wionych na rysunku 2.3. Rozpiętość (ss) lotek stabilizujących wynosi 8, 5·10−2 m. Podstawy mają długość

1, 12 ·10−1 m (Crs) oraz 6, 2 ·10−2 m (Cts). Odległość pomiędzy początkami podstaw lotek stabilizujących

(xts) jest równa 5 · 10−2 m. W celu zamodelowania niedokładności montażu lotek stabilizujących każdy

z nich został wychylony o 0,5◦ od pionu.

Rakieta posiada także dwie prostokątne lotki sterujące, umiejscowione bliżej głowicy rakiety. Każdy

z nich ma rozpiętość (sc) równą 6 · 10−2 m oraz długość podstawy Crc = Ctc = 3, 2 · 10−2 m. Ze względu

na prostokątny kształt lotek sterujących parametr xtc jest równy 0 m.

27

28 Implementacja układu sterowania i modelu rakiety w środowisku MATLAB/Simulink

Rysunek 4.1: Zrzut ekranu przedstawiający główne okno programu OpenRocket [7]

4.1. Implementacja modelu rakiety 29

W symulowanej rakiecie wykorzystano silnik na paliwo stałe. Jest to typ silnika, który generuje siłę

ciągu, wykorzystując spalanie mieszanki paliwowej (paliwo z utleniaczem) w formie stałej. Impuls całko-

wity zastosowanego silnika wynosi 1049 Ns, co można wyznaczyć jako całkę z siły po czasie:

I =

∫ Tb

0

Fp(t) dt, (4.1)

gdzie Tb oznacza czas wypalania się silnika. Siła ciągu generowana przez silnik została użyta w symulacji

jako przebieg jej wartości w czasie. Wykres przedstawiający przebieg siły ciągu został przedstawiony

na rys. 4.2. Można zauważyć, że zastosowany silnik wypala się po upływie ok. 2,12 s, osiągając maksymalną

0.0 0.5 1.0 1.5 2.0 2.5
Czas [s]

0

100

200

300

400

500

600

Si
a

ci
gu

 [N
]

wypalenie paliwa

Charakterystyka silnika

Rysunek 4.2: Wykres siły ciągu w czasie

wartość siły ciągu na poziomie 613,53 N.

Ze względu na wypalanie się paliwa w silniku, masa rakiety ulega zmianie, dlatego potrzebne było

wyznaczenie jej przebiegu w czasie. Wykres przedstawiający zmianę masy rakiety w czasie wypalania

silnika przedstawiono na rys. 4.3.

Z powodu malejącej masy rakiety podczas wypalania paliwa, zmianie ulega także położenie środka

ciężkości rakiety oraz wartości momentów bezwładności. Przebiegi przedstawiające zmianę wartości tych

parametrów przedstawiono na rys. 4.4, 4.5 i 4.6.

4.1.2 Sposób implementacji modelu rakiety w środowisku MATLAB/Simulink

Implementacja modelu rakiety została podzielona na 5 części, z których każda odpowiedzialna jest

za obliczanie innych wielkości podczas lotu tj.:

• wyznaczanie parametrów takich jak:

– gęstość powietrza,

– prędkość dźwięku,

– prędkość rakiety oraz jej liczba Macha,

– ciśnienie dynamiczne,

30 Implementacja układu sterowania i modelu rakiety w środowisku MATLAB/Simulink

0.0 0.5 1.0 1.5 2.0 2.5
Czas [s]

3.6

3.7

3.8

3.9

4.0

4.1

4.2

4.3

M
as

a
ra

ki
et

y
[k

g]

Przebieg zmiany masy rakiety w czasie wypalania silnika

Rysunek 4.3: Wykres masy rakiety w czasie

0.0 0.5 1.0 1.5 2.0 2.5
Czas [s]

0.64

0.65

0.66

0.67

0.68

0.69

0.70

0.71

Od
le

g
o

 r
od

ka
 c

i
ko

ci
od

 c
zu

bk
a

ra
ki

et
y

[m
]

Przebieg zmiany po o enia rodka ci ko ci

Rysunek 4.4: Wykres zmiany położenia środka ciężkości

– wartości siły normalnej oraz momentów działających w osiach poprzecznej i pionowej,

– pochodnych współczynników siły normalnej dla lotek sterujących i stateczników,

• prędkości w ruchu postępowym,

• prędkości w ruchu obrotowym,

• wartości kątów Eulera,

• przekształcenia pomiędzy lokalnym i globalnym układem współrzędnych.

4.1. Implementacja modelu rakiety 31

0.0 0.5 1.0 1.5 2.0 2.5
Czas [s]

0.00425

0.00430

0.00435

0.00440

0.00445

0.00450

0.00455

M
om

en
t b

ez
w

ad
no

ci
w

os
i r

ol
l [

kg
m

2]

Przebieg zmiany momentu bezw adno ci w osi roll

Rysunek 4.5: Wykres zmiany momentu bezwładności w osi podłużnej

0.0 0.5 1.0 1.5 2.0 2.5
Czas [s]

0.50

0.52

0.54

0.56

0.58

0.60

0.62

M
om

en
t b

ez
w

ad
no

ci
w

os
ia

ch
 p

itc
h

i y
aw

 [k
g

m
2]

Przebieg zmiany momentu bezw adno ci w osiach pitch i yaw

Rysunek 4.6: Wykres zmiany momentu bezwładności w osiach poprzecznej i pionowej

Schematy wykonanych układów w programie Simulink zostały przedstawione na rys. 4.7, 4.8, 4.9, 4.10

oraz 4.11.

Fragment modelu służący do wyznaczania niezbędnych wielkości fizycznych podczas lotu przedsta-

wiony na rys. 4.7 składa się m.in. z podsystemu (ang. subsystem) obliczającego prędkość dźwięku na po-

stawie aktualnej wysokości lotu (rys. 4.12). Prędkość dźwięku wyznaczana była za pomocą wzoru (2.13).

Kolejnym z wyznaczanych parametrów jest gęstość powietrza w zależności od aktualnej wysokości

na podstawie wzoru (2.15). Implementacja podsystemu, który jest za to odpowiedzialny, widoczna jest

32 Implementacja układu sterowania i modelu rakiety w środowisku MATLAB/Simulink

Parameters calculation

[Vm]

altitude a

Current speed of sound

altitude rho

Current air density

[rho]

[a]

Vm

a

mach

Mach number

[Vm]

[a]

[mach]

[mass]

[altitude]

[altitude]

1-D T(u)

mass

u

v

w

alpha_t

Total angle of attack

[u]

[w]

[v]

u

v

w

Vm

Magnitude of velocity

[u]

[v]

[w]

Vm

rho

q

Dynamic pressure

[Vm]

[rho]

[dyn_press]

[alpha]

alpha

mach

dynamic pressure

v

w

N_y

N_z

M_y

M_z

Cn_alpha (fins)

Cn_alpha (canards)

Normal force

[alpha]

[mach]

[dyn_press]

[v]

[w]

[N_z]

[N_y]

[M_y]

[M_z]

[Cn_alpha_1_fins]

[Cn_alpha_1_canards]

Rysunek 4.7: Fragment modelu obliczający parametry

Translational motion

dynamic pressure

m

Fg_x

mach

q

r

w

v

u

x velocity

[q]

[r]

[u]

m

Fg_y

N_y

r

p

u

w

v

y velocity

[r]

[p]

[v]

m

Fg_z

N_z

p

q

v

u

w

z velocity

[w]

[u]

[w][v]

[w] [v]

[u]

[p]

[q]

[Fg_x]

[Fg_y] [Fg_z]

[mass]

[mach]

[mass] [mass]

[dyn_press]

[N_y][N_z]

Rysunek 4.8: Fragment modelu obliczający odpowiedź obiektu w ruchu postępowym

na rys. 4.13.

Zmiana masy rakiety (tak samo jako pozostałe parametry rakiety wygenerowane przy użyciu programu

OpenRocket) została przedstawiona za pomocą bloku z tablicą przeglądową (ang. lookup table). Zawiera

ona dane wygenerowane przez program OpenRocket w postaci krzywej dopasowanej do tych danych

za pomocą funkcji fit.

Wartość wypadkowej prędkości postępowej rakiety została wyznaczona jako norma wektora prędkości,

którego elementami są składowe prędkości w osiach x, y oraz z, czyli odpowiednio u, v, w. W modelu

rakiety jest ona wyznaczana za pomocą bloku MATLAB function wykorzystującego funkcję:

1 function Vm = fcn(u, v, w)

2 Vm = norm([u, v, w]);

Listing 4.1: Funkcja obliczająca wartość wypadkowej prędkości postępowej

Na podstawie prędkości wyznaczonej przez funkcje z listingu 4.1 oraz aktualnej prędkości dźwięku wy-

znaczana jest wartość liczby Macha. Jest ona obliczana na podstawie wzoru (2.12) za pomocą podsystemu

4.1. Implementacja modelu rakiety 33

Rotational motion

Vm

dynamic pressure

mach

Cn_alpha (fins)

Cn_alpha (canards)

delta

p

p'

Roll rate

[Vm]

p

r

M_y

rho

q

Pitch rate

p

q

M_z

rho

r

Yaw rate

[p] [p]

[q]
[r]

[r] [q]

[p]

[mach]

1

delta

1

roll rate

[dyn_press]

[M_y]
[M_z]

[rho]

[rho]

[Cn_alpha_1_fins]

[Cn_alpha_1_canards] roll_acc

Rysunek 4.9: Fragment modelu obliczający odpowiedź obiektu w ruchu obrotowym

Euler angles

p

q

r

theta

phi

Roll angle

[p]

[q]

[r]

[phi]

q

r

phi

theta

Pitch angle

[q]

[r] [theta]

[theta]
[phi]

q

r

phi

theta

psi

Heading angle

[q]

[r]

[psi]

[phi]

[theta]

Rysunek 4.10: Fragment modelu obliczający wartości kątów Eulera

Axes transformation

m

phi

theta

psi

Fgx_b

Fgy_b

Fgz_b

Gravitational force in body coords

[phi]

[theta]

[psi]

[Fg_x]

[Fg_y]

[Fg_z]

[mass]

u

v

w

phi

theta

psi

Vx

Vy

Vz

Velocity in environment coords

[phi]

[theta]

[psi]

[u]

[v]

[w]

[altitude]

STOP< 0

Rysunek 4.11: Fragment modelu odpowiadający za przekształcenia pomiędzy lokalnym i globalnym układem wsp.

przedstawionego na rys. 4.14.

Wartość ciśnienia dynamicznego obliczana jest na podstawie wzoru (2.1) za pomocą bloku MATLAB

function o nazwie Dynamic pressure. W strukturze bloku została zaimplementowana funkcja przedsta-

wiona na listingu 4.2.

1 function q = fcn(Vm, rho)

2 q = 0.5 * Vm^2 * rho;

Listing 4.2: Funkcja obliczająca wartość ciśnienia dynamicznego

W bloku MATLAB function o nazwie Total angle of attack obliczana jest także wartość kąta natarcia.

Wyznaczana jest ona na podstawie zależności wartości składowych wypadkowej prędkości postępowej

34 Implementacja układu sterowania i modelu rakiety w środowisku MATLAB/Simulink

1

a
1

altitude
T

Rysunek 4.12: Podsystem wyznaczający aktualną prędkość dźwięku

1

rho

1

altitude

Rysunek 4.13: Podsystem wyznaczający aktualną gęstość powietrza

1

mach

1

Vm
2

a

Rysunek 4.14: Podsystem wyznaczający aktualną wartość liczby Macha

rakiety, korzystając ze wzoru:

α = arctg

√
v2 + w2

u
. (4.2)

Funkcja zaimplementowana we wspomnianym bloku została przedstawiona na listingu 4.3.

1 function alpha_t = fcn(u, v, w)

2 alpha_t = atan2(sqrt(v^2 + w^2), u);

Listing 4.3: Funkcja obliczająca wartość kąta natarcia

We fragmencie modelu odpowiadającym za wyznaczanie niektórych parametrów i wielkości fizycznych

obliczane są także wartości składowych siły normalnej oraz momentów siły, które są przez nie genero-

wane. Na rys. 4.15 przedstawiono podsystem, który za to odpowiada. Wyznacza on także pochodne

współczynników siły normalnej (Cnα1
) generowane przez pojedyncze powierzchnie sterowe.

Wartość siły normalnej wyznaczana jest w bloku Normal force na podstawie wzoru (2.5), który zo-

stał przedstawiony na rysunku 4.16. Następnie jest ona rzutowana na osie y i z układu współrzędnych

rakiety za pomocą bloków Project to y axis oraz Project to z axis. Rzutowanie odbywa się za pomocą

wzorów (2.35), które zostały zaimplementowane jako funkcje przedstawie na listingach 4.4 i 4.5.

1 function F_y = fcn(v, w, F)

2 F_y = -F * v / sqrt(v^2 + w^2);

Listing 4.4: Funkcja obliczająca wartość siły normalnej w osi y

1 function F_z = fcn(v, w, F)

2 F_z = F * w / sqrt(v^2 + w^2);

Listing 4.5: Funkcja obliczająca wartość siły normalnej w osi z

4.1. Implementacja modelu rakiety 35

1-D T(u)

x_cm

alpha

mach

x_cp

Cn_alpha

Cn_alpha_1_fins

Cn_alpha_1_canards

Cn_alpha and center of pressure

Cn_alpha

alpha

Ndynamic pressure

Cn

N

Cn_alpha

alpha

dynamic pressure

N

Normal force

1

alpha

2

mach

4

v
5

w

2

N_z

1

N_y

3

M_y

4

M_z

3

dynamic pressure

v

w

F

F_z

Project to z axis

v

w

F

F_y

Project to y axis

[N_arm]

[N_arm]

[N_arm]

[Cn_alpha]

[Cn_alpha]

[alpha]

[alpha]

5

Cn_alpha (fins)

6

Cn_alpha (canards)

M_y

M_z

Rysunek 4.15: Podsystem wyznaczający wartość siły normalnej, momentów przez nią generowanych oraz pochodne wsp.
siły normalnej

1

Cn_alpha

2

alpha
1

N

3

dynamic pressure

Cn

N

Rysunek 4.16: Podsystem wyznaczający wartość siły normalnej

W celu obliczenia momentów sił generowanych przez składowe siły normalnej potrzebna jest długość

ramienia, na jakiej te siły działają tj. różnica odległości środka parcia i środka ciężkości od czubka rakiety.

Środek ciężkości wyznaczany jest, wykorzystując tablicę przeglądową (analogicznie do masy rakiety),

natomiast środek parcia obliczany jest wewnątrz bloku Cn alpha and center of pressure. Jego budowa

wewnętrzna została przedstawiona na rys. 4.17.

Wartość odległości środka parcia od czubka rakiety wyznaczana jest na podstawie wzoru (2.16) tj. jako

średnia ważona odległości środków parcia komponentów rakiety, gdzie wagami są ich pochodne współ-

czynników siły normalnej. Odległości środka parcia od czubka rakiety dla komponentów rakiety mają stałe

wartości i zostały wyznaczone, wykorzystując wzory (2.17), (2.19), (2.20), (2.21), (2.22). Poniżej przed-

stawiono listingi z funkcjami pomocniczymi służącymi do obliczania położenia środków parcia głowicy,

lotek sterujących oraz stateczników.

1 function x_cp = nose_cone_x_cp(nose_len, r_ref)

2 V = 2 / 3 * pi * nose_len * r_ref^2;

3 x_cp = nose_len - V / (pi * r_ref^2);

4 end

Listing 4.6: Funkcja obliczająca położenie środka parcia głowicy

1 function x_cp = canards_x_cp(nose_len, body_1_len, Cr, Ct)

2 x_cp = nose_len + (body_1_len - Cr - 2.5e-2) + 1 / 6 * (Cr^2 + Ct^2 + Cr * Ct) / (Cr + Ct);

3 end

Listing 4.7: Funkcja obliczająca położenie środka parcia lotek sterujących

36 Implementacja układu sterowania i modelu rakiety w środowisku MATLAB/Simulink

alpha Cn_alpha

Cn_alpha (nose cone)

alpha

d_ref

body_len

A_ref

Cn_alpha

Cn_alpha (body 1)

alpha

d_ref

body_len

A_ref

Cn_alpha

Cn_alpha (body 2)

mach

span

A_ref

r_ref

A_fin

Cn_alpha

Cn_alpha_1

Cn_alpha (fins)

mach

span

A_ref

r_ref

A_fin

Cn_alpha

Cn_alpha_1

Cn_alpha (canards)

1

alpha

2

mach

1

x_cp

2

Cn_alpha

[Cn_alpha_nose_cone]

[Cn_alpha_nose_cone]

[Cn_alpha_body_1]

[Cn_alpha_body_1]

[Cn_alpha_body_2]

[Cn_alpha_body_2]

[Cn_alpha_fins]

[Cn_alpha_fins]

[Cn_alpha_canards]

[Cn_alpha_canards]

3

Cn_alpha_1_fins

4

Cn_alpha_1_canards

5

5

5

5

[Cn_alpha_nose_cone]

[Cn_alpha_body_1]

[Cn_alpha_body_2]

[Cn_alpha_fins]

[Cn_alpha_canards]

Rysunek 4.17: Podsystem wyznaczający położenie środka parcia oraz wartość pochodnej współczynnika siły normalnej

1 function x_cp = fin_x_cp(nose_len, body_1_len, body_2_len, Cr, Ct, xt)

2 x_cp = nose_len + body_1_len + (body_2_len - Cr - 1e-2) + xt / 3 * (Cr + 2 * Ct) / (Cr + Ct) +

↪→ 1 / 6 * (Cr^2 + Ct^2 + Cr * Ct) / (Cr + Ct);
3 end

Listing 4.8: Funkcja obliczająca położenie środka parcia stateczników

Wartości pochodnych współczynników siły normalnej wyznaczane są za pomocą wzorów (2.8), (2.9)

i (2.10). Wzór (2.8) został zaimplementowany w bloku Cn alpha (nose cone) w postaci funkcji przedsta-

wionej na listingu 4.9.

1 function Cn_alpha = fcn(alpha)

2

4.1. Implementacja modelu rakiety 37

3 if alpha ~= 0

4 Cn_alpha = 2 * sin(alpha) / alpha;

5 else

6 Cn_alpha = 2;

7 end

Listing 4.9: Funkcja obliczająca pochodną współczynnika siły normalnej dla głowicy rakiety

Warunek logiczny we wspomnianej funkcji służy jako zabezpieczenie przed dzieleniem przez 0 w sytuacji,

kiedy kąt natarcia jest równy 0. Pochodne współczynników siły normalnej dla sekcji kadłuba wyznaczane

są za pomocą bloków Cn alpha (body 1) i Cn alpha (body 2), w których została zaimplementowana funkcja:

1 function Cn_alpha = fcn(alpha, d_ref, body_len, A_ref)

2 Cn_alpha = 1.1 * d_ref * body_len / A_ref * sin(alpha)^2;

Listing 4.10: Funkcja obliczająca pochodną współczynnika siły normalnej dla sekcji kadłuba

Wartości Cnα
jak i Cnα1

dla lotek sterujących i stateczników obliczane są w blokach Cn alpha (ca-

nards) oraz Cn alpha (fins). Funkcje, które są w nich zawarte przedstawiono odpowiednio na listingu 4.11

oraz 4.12.

1 function [Cn_alpha, Cn_alpha_1] = fcn(mach, span, A_ref, r_ref, A_fin)

2 Cn_alpha_1 = 2 * pi * span^2 / A_ref / (1 + sqrt(1 + (sqrt(abs(mach^2 - 1)) * span^2 /

↪→ A_fin)^2));
3 Cn_alpha = (1 + r_ref / (span + r_ref)) * (sin(pi / 2)^2 * Cn_alpha_1 + sin(pi / 2 + pi)^2 *

↪→ Cn_alpha_1);

Listing 4.11: Funkcja obliczająca pochodną współczynnika siły normalnej dla lotek sterujących

1 function [Cn_alpha, Cn_alpha_1] = fcn(mach, span, A_ref, r_ref, A_fin)

2 Cn_alpha_1 = 2 * pi * span^2 / A_ref / (1 + sqrt(1 + (sqrt(abs(mach^2 - 1)) * span^2 /

↪→ A_fin)^2));
3 Cn_alpha = (1 + r_ref / (span + r_ref)) * 2 * Cn_alpha_1 * (1 - 0.06 * sin(2 * pi / 2));

Listing 4.12: Funkcja obliczająca pochodną współczynnika siły normalnej dla stateczników

Całkowita pochodna współczynnika siły normalnej obliczana jest jako suma współczynników każdego

z komponentów rakiety zgodnie z (2.7).

Kolejny fragment modelu odpowiedzialny jest za obliczanie prędkości w ruchu postępowym rakiety

(rys. 4.8). Składa się on z 3 podsystemów x velocity, y velocity oraz z velocity, z których każdy służy

do obliczania jednej ze składowych prędkości postępowej rakiety odpowiednio wzdłuż osi x, y i z całkując

równanie (2.33). Ich implementacje zostały przedstawione na rysunkach 4.18, 4.19 i 4.20. Przyspieszenia

obliczone za pomocą równania (2.33) są całkowane za pomocą integratorów w celu uzyskania składowych

prędkości postępowej. Warunki początkowe każdej składowej są równe 0, ponieważ symulowano lot rakiety,

zakładając, że uruchomienie silnika następuje w chwili t = 0.

Siła oporu aerodynamicznego w bloku x velocity wyznaczana jest z wykorzystaniem wzoru (2.4) w pod-

systemie Fa x (rys. 4.21). Wykorzystuje on współczynnik siły oporu aerodynamicznego wygenerowany

przy użyciu programu OpenRocket w formie tablicy przeglądowej, który został uzależniony od wartości

liczby Macha.

Na wejścia N y oraz N z w blokach na rys. 4.19 i 4.20 podawane są wartości składowych w osiach y

i z siły normalnej obliczanej w podsystemie z rys. 4.15. Wartości Fg x, Fg y i Fg z oznaczają składowe

38 Implementacja układu sterowania i modelu rakiety w środowisku MATLAB/Simulink

1

u

1

dynamic pressure

Fa_x

dynamic pressure

mach

Ca

dynamic pressure

mach

Fa_x

Fa_x

5

q

6

r

7

w

8

v

3

Fg_x

2

m

4

mach

1-D T(u)

Thrust

Rysunek 4.18: Podsystem wyznaczający prędkość rakiety w osi x

1

v

4

r

5

p

6

u

7

w

2

Fg_y

1

m

3

N_y

Rysunek 4.19: Podsystem wyznaczający prędkość rakiety w osi y

siły grawitacji w układzie lokalnym rakiety. Wejścia u, v, w oznaczają odpowiednio wartości prędkości

postępowych rakiety, a p, q, r wartości prędkości kątowych. Na wejście m podawana jest aktualna masa

rakiety wyznaczana z tablicy przeglądowej w sekcji na rys. 4.7.

W sekcji przedstawionej na rys. 4.9 znajdują się podsystemy wyznaczające prędkości kątowe rakiety

w osiach podłużnej, pionowej i poprzecznej całkując równania dynamiki w ruchu obrotowym (2.44). Ich

implementacje przedstawione są na rysunkach 4.22, 4.23 i 4.24.

Blok L a w podsystemie na rys. 4.22 służy do obliczania aerodynamicznego momentu siły genero-

wanego przez powierzchnie sterowe. Jego wartość obliczana jest na podstawie wzoru (2.46). Sposób jego

implementacji przedstawiono na rys. 4.25.

Wartości współczynników momentów sił forsujących oraz tłumiących ruch obrotowy w osi podłużnej,

obliczane są za pomocą bloków Interpreted MATLAB Fcn. Umieszczono wewnątrz nich uchwyty funkcji

(ang. function handles) wykorzystujących równania (2.47) i (2.49). Dzięki takiemu rozwiązaniu uniknięto

potrzeby podawania stałych parametrów jako argumentów wykorzystywanych bloków, co zwiększa jego

czytelność.

4.1. Implementacja modelu rakiety 39

1

w

4

p

5

q

6

v

7

u

2

Fg_z

1

m

3

N_z

Rysunek 4.20: Podsystem wyznaczający prędkość rakiety w osi z

1

Fa_x

1

dynamic pressure

2

mach

1-D T(u)

Ca

Rysunek 4.21: Podsystem wyznaczający wartość siły oporu aerodynamicznego

1

p

6

delta

1

Vm

2

dynamic pressure

Vm

dynamic pressure

mach

delta_r

Cn_alpha (fins)

Cn_alpha (canards)

p

La

La

1-D T(u)

rotational_inertia

3

mach

2

p'

4

Cn_alpha (fins)

5

Cn_alpha (canards)
p'

Rysunek 4.22: Podsystem wyznaczający wartość prędkości rotacji w osi podłużnej

1 Clf_fins_s = @(Cnalfa_1, delta) Clf_fins(s_s, r_ref, Cr_s, Ct_s, d_ref, delta, N_s, Cnalfa_1);

2 Cld_fins_s = @(v0, omega, M) Cld_fins(d_ref, v0, N_s, omega, r_ref, Cr_s, s_s, Ct_s, M, A_ref);

3

4 Clf_fins_c = @(Cnalfa_1, delta) Clf_fins(s_c, r_ref, Cr_c, Ct_c, d_ref, delta, N_c, Cnalfa_1);

5 Cld_fins_c = @(v0, omega, M) Cld_fins(d_ref, v0, N_c, omega, r_ref, Cr_c, s_c, Ct_c, M, A_ref);

Listing 4.13: Uchwyty funkcji obliczających współczynniki momentów w osi podłużnej

40 Implementacja układu sterowania i modelu rakiety w środowisku MATLAB/Simulink

1

q

2

r
1

p

1-D T(u)

rotational_inertia

1-D T(u)

longitudinal_inertia

3

M_y

4

rho

Body damping

Fin damping

rho

M_damp

q

Canards damping

q

rho

M_damp

Damping moment

q'

Rysunek 4.23: Podsystem wyznaczający wartość prędkości rotacji w osi poprzecznej

1

r

2

q
1

p

1-D T(u)

rotational_inertia

1-D T(u)

longitudinal_inertia

3

M_z

4

rho

rho

r

M_damp

r

rho

M_damp

Damping moment

r'

Rysunek 4.24: Podsystem wyznaczający wartość prędkości rotacji w osi pionowej

Implementacje funkcji Clf_fins i Cld_fins, które wyznaczają wartości współczynników przedstawione,

zostały na poniższych listingach.

1 function Clf_fins = Clf_fins(s, r_ref, Cr, Ct, d_ref, delta, N, Cnalfa1)

2 yMAC = s * (Cr + 2*Ct) / (3 * (Cr + Ct));

3 Clf_fins = N * (yMAC + r_ref) * Cnalfa1 * delta / d_ref;

4 end

Listing 4.14: Funkcja obliczająca wartość współczynnika forsującego momentu siły

4.1. Implementacja modelu rakiety 41

1

Vm

3

mach

7

p

4

delta_r

1

La

Interpreted
MATLAB Fcn

Clf_fins_s

2

2

Interpreted
MATLAB Fcn

Cld_fins_s

3

3

Interpreted
MATLAB Fcn

Clf_fins_c

2

2

Interpreted
MATLAB Fcn

Cld_fins_c

3

[mach]

[mach]

[mach]

[p]

[p]

[p]

[Vm]

[Vm]

[Vm]

2

dynamic pressure

5

Cn_alpha (fins)

6

Cn_alpha (canards)

3

Rysunek 4.25: Podsystem wyznaczający wartość momentu siły generowanego przez powierzchnie sterowe

1 function Cl_d = Cld_fins(d_ref, v0, N, omega, r_ref, Cr, s, Ct, M, A_ref)

2 betha = sqrt(abs(1 - M^2));

3 CNa0 = 2 * pi / betha;

4 Cl_d = N * CNa0 * omega / (A_ref * d_ref * v0) * ((Cr + Ct) / 2 * r_ref^2 * s + (Cr + 2 * Ct) /

↪→ 3 * r_ref * s^2 + (Cr + 3 * Ct) / 12 * s^3);
5 end

Listing 4.15: Funkcja obliczająca wartość współczynnika tłumiącego momentu siły

W przypadku podsystemów wyznaczających prędkość rotacji w osiach podłużnej i pionowej (rys. 4.23

i 4.24) wejścia M y oraz M z oznaczają wartości momentów sił generowanych przez działanie siły nor-

malnej. Obliczane są one w podsystemie z rys. 4.15. Natomiast wartości momentów sił tłumiących ruch

obrotowy w osiach podłużnej i pionowej obliczane są za pomocą bloków Damping moment. Oba bloki

zostały zaimplementowane w analogiczny sposób. Blok dotyczący osi podłużnej został przedstawiony

na rys. 4.26. Wartość tłumiącego momentu siły obliczana jest jako suma momentów generowanych przez

korpus rakiety oraz oba zestawy powierzchni sterowych według równań (2.51) i (2.52). Równanie (2.51)

zostało zaimplementowane za pomocą funkcji przedstawionej na listingu 4.16, a równanie (2.52) za po-

mocą funkcji 4.17.

1 function M_damp = body_tube_damping(angular_rate, air_density, body_len, tube_radius)

2 M_damp = sign(angular_rate) * 0.275 * air_density * body_len^4 * tube_radius * angular_rate^2;

3 end

Listing 4.16: Funkcja obliczająca wartość momentu tłumiącego w osi poprzecznej i pionowej dla korpusu rakiety

1 function M_damp = fin_damping(angular_rate, air_density, num_of_fins, fin_area, kappa)

2 M_damp = sign(angular_rate) * 0.3 * air_density * num_of_fins * fin_area * kappa^3 *

42 Implementacja układu sterowania i modelu rakiety w środowisku MATLAB/Simulink

↪→ angular_rate^2;
3 end

Listing 4.17: Funkcja obliczająca wartość momentu tłumiącego w osi poprzecznej i pionowej dla zestawu lotek

Interpreted
MATLAB Fcn

Body damping

2

2

Interpreted
MATLAB Fcn

Fin damping

2

2

rho

1

M_damp

1

q

Interpreted
MATLAB Fcn

Canards damping

2

2

2

Rysunek 4.26: Podsystem wyznaczający wartość momentu siły tłumiącego ruch w osi podłużnej

Momenty bezwładności rakiety wykorzystywane przez podsystemy obliczające prędkości rotacji wy-

znaczane są za pomocą tablic przeglądowych wygenerowanych na podstawie danych z programu OpenRoc-

ket. Na potrzeby symulacji przyjęto zerowe warunki początkowe w integratorach obliczających prędkości

rotacji, ponieważ założono, że rakieta nie porusza się przed startem.

Podsystem służący do wyznaczania wartości kątów Eulera (rys. 4.10), wykorzystywanych przy opisie

przekształceń pomiędzy globalnym układem współrzędnych a układem współrzędnych rakiety, składa się

z 3 podsystemów. Każdy z nich oblicza wartość jednego z 3 kątów φ, θ i ψ na podstawie równania (2.40).

Na rys. 4.27 widoczna jest implementacja podsystemu odpowiadającego za obliczanie wartości kąta φ.

Zaimplementowana w tym podsystemie funkcja w bloku MATLAB function została przedstawiona na li-

1

phi

1

p
2

q
3

r

p

q

r

theta

phi

dphi

Roll Euler rate

4

theta

Rysunek 4.27: Podsystem wyznaczający wartość kąta φ

stingu 4.18. Przyjęto zerową wartość początkową kąta φ.

1 function dphi = fcn(p, q, r, theta, phi)

2 dphi = p + (q * sin(phi) + r * cos(phi)) * tan(theta);

Listing 4.18: Funkcja obliczająca prędkość zmiany wartości kąta φ

Podsystem obliczający wartość kąta θ został przedstawiony na rys. 4.28. Listing 4.19 przedstawia

funkcję zaimplementowaną wewnątrz bloku MATLAB function. Przyjęto, że początkowa wartość kąta θ

jest równa π
2 co oznacza, że rakieta przed startem skierowana jest pionowo do góry.

4.1. Implementacja modelu rakiety 43

1

theta

1

q

2

r

q

r

phi

dtheta

Pitch Euler rate

3

phi

Rysunek 4.28: Podsystem wyznaczający wartość kąta θ

1 function dtheta = fcn(q, r, phi)

2 dtheta = q * cos(phi) - r * sin(phi);

Listing 4.19: Funkcja obliczająca prędkość zmiany wartości kąta θ

Ostatni z podsystemów odpowiadający za wyznaczanie wartości kąta ψ został przedstawiony na rys. 4.29.

Funkcja zaimplementowana w bloku MATLAB function została przedstawiona na listingu 4.20.

1

psi

1

q
2

r

q

r

phi

theta

dpsi

Heading euler rate

3

phi
4

theta

Rysunek 4.29: Podsystem wyznaczający wartość kąta ψ

1 function dpsi = fcn(q, r, phi, theta)

2 dpsi = (q * sin(phi) + r * cos(phi)) / (cos(theta) + (cos(theta) == 0) * eps);

Listing 4.20: Funkcja obliczająca prędkość zmiany wartości kąta ψ

Fragment służący do przekształceń pomiędzy globalnym układem współrzędnych i układem współ-

rzędnych rakiety (rys. 4.11) składa się z dwóch bloków MATLAB function. Pierwszy z nich (Gravitational

force in body coords) jest odpowiedzialny za wyznaczenie wartości składowych siły grawitacji działającej

na rakietę w jej lokalnym układzie współrzędnych. Funkcja (listing 4.21) zaimplementowana wewnątrz

tego bloku wykorzystuje macierz transformacji z równania (2.38).

1 function [Fgx_b, Fgy_b, Fgz_b] = fcn(m, phi, theta, psi)

2

3 Fgz_e = m * 9.81;

4

5 Te_b = [cos(theta) * cos(psi), sin(phi) * sin(theta) * cos(psi) - cos(phi) * sin(psi), cos(phi)

↪→ * sin(theta) * cos(psi) + sin(phi) * sin(psi);
6 cos(theta) * sin(psi), sin(phi) * sin(theta) * sin(psi) + cos(phi) * cos(psi), cos(phi)

↪→ * sin(theta) * sin(psi) - sin(phi) * cos(psi);
7 -sin(theta), sin(phi) * cos(theta), cos(phi) * cos(theta)];

8

9 b = Te_b’ * [0; 0; Fgz_e];

10 Fgx_b = b(1);

11 Fgy_b = b(2);

44 Implementacja układu sterowania i modelu rakiety w środowisku MATLAB/Simulink

12 Fgz_b = b(3);

Listing 4.21: Funkcja obliczająca wartości składowych siły grawitacji w układzie wsp. rakiety

Równanie (2.38) jest także wykorzystywane w bloku Velocity in environment coords w celu wyznaczenia

składowych prędkości w ruchu postępowym rakiety w układzie globalnym. Funkcja, która wykorzystywana

jest do tego celu została przedstawiona na listingu 4.22.

1 function [Vx, Vy, Vz] = fcn(u, v, w, phi, theta, psi)

2

3 Te_b = [cos(theta) * cos(psi), sin(phi) * sin(theta) * cos(psi) - cos(phi) * sin(psi), cos(phi)

↪→ * sin(theta) * cos(psi) + sin(phi) * sin(psi);
4 cos(theta) * sin(psi), sin(phi) * sin(theta) * sin(psi) + cos(phi) * cos(psi), cos(phi)

↪→ * sin(theta) * sin(psi) - sin(phi) * cos(psi);
5 -sin(theta), sin(phi) * cos(theta), cos(phi) * cos(theta)];

6

7 b = Te_b * [u; v; w];

8 Vx = b(1);

9 Vy = b(2);

10 Vz = -b(3);

Listing 4.22: Funkcja obliczająca wartości składowych prędkości w ruchu postepowym w układzie globalnym

Zmiana znaku prędkości w osi z układu globalnego wynika z tego, że podczas symulacji obserwowana

jest prędkość wznoszenia rakiety, a oś z układu globalnego skierowana jest w dół. Obliczana jest także

wysokość, na jakiej aktualnie znajduje się rakieta (przyjęto zerową wysokość początkową). Dodatkowo

symulacja jest przerywana (za pomocą bloku Stop Simulation) w momencie wykrycia apogeum wysokość

tj. zmiany znaku prędkości wznoszenia rakiety.

Na rys. 4.30 przedstawiono ustawienia solvera wykorzystywanego do symulacji w programie MATLAB.

Wybrany został solver ode45 o zmiennym kroku czasowym. Maksymalna wartość kroku czasowego była

równa 0,01 s.

4.1.3 Implementacja układu wykonawczego w środowisku MATLAB/Simulink

W celu symulowania działania zaprojektowanego układu regulacji potrzebne było także zamodelowa-

nie układu wykonawczego służącego do poruszania lotkami sterującymi. Przyjęto, że serwomechanizm

realizujący ruch lotek sterujących można zamodelować za pomocą inercji pierwszego rzędu z opóźnieniem

czasowym. Na podstawie identyfikacji modelu serwomechanizmu stwierdzono, że wzmocnienie statyczne

k wykorzystanego modelu jest równe 1, stała czasowa została przyjęta na poziomie T = 0, 0197, a opóź-

nienie czasowe jako To = 0, 025. Podsystem implementujący model układu wykonawczego przedstawiono

na rys. 4.31.

4.2 Porównanie działania modelu rakiety z programem OpenRocket

Skuteczność działania modelu rakiety zaimplementowanego w programie MATLAB została porównana

z wynikami uzyskanymi z programu OpenRocket. Na rys. 4.32 przedstawiono porównanie przebiegów

prędkości rotacji rakiety podczas lotu uzyskane za pomocą zaimplementowanego modelu rakiety oraz

programu OpenRocket. Można zauważyć, że pojawia się różnica w skali wykresów. Prędkość rotacji

uzyskiwana w symulacji w programie OpenRocket jest ok. 1,28 razy większa niż uzyskana przez model

4.3. Implementacja układu sterowania ADRC 45

Rysunek 4.30: Ustawienia solvera wykorzystanego w modelu

1

delta_z

1

delta

Rysunek 4.31: Podsystem zawierający model mechanizmu

rakiety w programie MATLAB. Wynika to ze zmian wprowadzonych przez autora programu OpenRocket

w sposobie wyznaczania prędkości rotacji [7].

Porównano także przebiegi prędkości wznoszenia rakiety (rys. 4.33) oraz wysokości lotu (rys. 4.34).

Można zauważyć, że zachowanie modelu rakiety oraz symulacja w programie OpenRocket są bardzo

do siebie zbliżone.

Maksymalna prędkość rakiety podczas lotu wynosi ok. 228, 47 ms . Jest ona osiągana w momencie

wypalenia silnika. Po osiągnięciu maksymalnej prędkości jej wartość spada do zera w momencie osiągnięcia

apogeum wysokości.

Przebiegi wysokości lotu także są zbliżone do siebie. Można z nich odczytać, że apogeum wysokości

podczas lotu jest równe ok. 1520,23 m.

4.3 Implementacja układu sterowania ADRC

W celu symulacji działania systemu sterowania potrzebne było zaimplementowanie zaprojektowanego

sterownika ADRC w programie MATLAB. Dzięki niemu możliwe było sprawdzenie skuteczności układu

sterowania przed eksperymentalną weryfikacją z wykorzystaniem rzeczywistego obiektu.

46 Implementacja układu sterowania i modelu rakiety w środowisku MATLAB/Simulink

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Czas [s]

0

2

4

6

8

Pr
dk

o
 ro

ta
cji

 [r
ad

/s
]

Wykres pr dko ci rotacji rakiety
model rakiety
OpenRocket

Rysunek 4.32: Porównanie wykresów prędkości rotacji rakiety

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Czas [s]

0

50

100

150

200

Pr
dk

o
 w

zn
os

ze
ni

a
[m

/s
]

Wykres pr dko ci wznoszenia si rakiety
model rakiety
OpenRocket

Rysunek 4.33: Porównanie wykresów prędkości wznoszenia rakiety

4.3.1 Implementacja w środowisku MATLAB/Simulink

Podsystem, w którym został zaimplementowany sterownik ADRC został przedstawiony na rys. 4.35.

Wejściami bloku sterownika są wartość referencyjna prędkości rotacji p ref (na potrzeby tej pracy jest

ona równa 0) oraz aktualna prędkość rotacji p, a wyjściem u jest sygnał sterujący wyznaczony przez

sterownik. Wartości sygnałów wejściowych są próbkowane z okresem 0,001 s.

Na podstawie wartości referencyjnej prędkości rotacji oraz jej aktualnej wartości, obliczany jest uchyb,

4.3. Implementacja układu sterowania ADRC 47

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Czas [s]

0

200

400

600

800

1000

1200

1400

1600

W
ys

ok
o

 [m
]

Wykres wysoko na jakiej znajduje si rakieta
model rakiety
OpenRocket

Rysunek 4.34: Porównanie wykresów wysokości lotu rakiety

którego wartość podawana jest na wejście bloku implementującego sterownik pętli zewnętrznej. Sterow-

nika pętli zewnętrznej został zaimplementowany na podstawie wzoru (3.25). Funkcja wykorzystywana

wewnątrz bloku Sterownik zewn. została przedstawiona na listingu 4.23.

1 function u_g = sterownik_zew(e)

2 global kp kd prev_e Tc;

3 u_g = kp * e + kd * (e - prev_e) / Tc;

4 prev_e = e;

5 end

Listing 4.23: Funkcja implementująca sterownik zewnętrzny

Człon różniczkujący sterownika został zaimplementowany, korzystając z metody Eulera wstecz. Zmienne

kp oraz kd oznaczają nastawy sterownika (odpowiednio k0 oraz k1). Wartość prev_e przechowuje poprzed-

nią wartość uchybu, a Tc przechowuje wartość okresu próbkowania pętli zewnętrznej sterownika.

Obserwator LESO także został zaimplementowany za pomocą bloku Interpreted MATLAB Fcn. Funk-

cja wykorzystana w środku tego bloku została przedstawiona na listingu 4.24. Obliczanie wartości próbek

estymowanego całkowitego zaburzenia oraz estymowanych wartości prędkości i przyspieszenia rotacji

zostały zapisane na podstawie równania (3.12). Na wejście LESO podawane są poprzednie próbki sy-

gnału sterującego (z uwzględnieniem opóźnienia czasowego układu wykonawczego wynoszącego 25 próbek

tj. 0,025 s), prędkości rotacji, estymowanej prędkości rotacji, estymowanego przyspieszenia rotacji oraz

estymowanego całkowitego zaburzenia.

1 function xp_est = LESO(u)

2 us = u(1);

3 p = u(2);

4 p_est = u(3);

5 dp_est = u(4);

6 f_est = u(5);

48 Implementacja układu sterowania i modelu rakiety w środowisku MATLAB/Simulink

Z-1

1

p_ref

2

p

1

u

Z-1

Z-1

Z-1

p z szumem pomiarowym vs p_est

Porównanie f prawdziwe vs f_est

p prawdzwie vd p_est

roll_acc

5

Interpreted
MATLAB Fcn

Sterownik zewn.

Interpreted
MATLAB Fcn

LESO

3

5

[f_est]

[f_est]

[p_est]

[p_est]

[p_est]

3

Z-1

Z-25

p_true

[p]

[p]

[p]

[f_est]

[f_est]

[p_est][dp_est]

[dp_est]

e

f prawdzwiwe

u bez saturacjie

Rysunek 4.35: Podsystem zawierający implementację sterownika ADRC

7

8 global A_d B_d O_d;

9 x_est = [p_est; dp_est; f_est];

10

11 xp_est = A_d * x_est + B_d * us + O_d * (p - p_est);

12 end

Listing 4.24: Funkcja implementująca obserwator LESO

Wyznaczenie wartości macierzy dyskretnych równań stanu obserwatora wykonywane jest w głównym

skrypcie programu w sposób przedstawiony na listingu 4.25.

1 L = [3 * omega_0; 3 * omega_0^2; omega_0^3];

2

3 % macierze do rownania czasu ciaglego LESO

4 A = [0 1 0; 0 0 1; 0 0 0];

5 B = [0; b_est; 0];

6 C = [1 0 0];

7

8 % macierze do rownania czasu dyskretnego LESO

9 A_d = eye(3)+ A * Ta;

4.3. Implementacja układu sterowania ADRC 49

10 B_d = Ta * B;

11 O_d = Ta * L;

Listing 4.25: Wyznaczenie macierzy dyskretnych równań stanu LESO

Zmienna omega_0 = 10 rads zawiera wartość pasma przenoszenia obserwatora, a Ta = 0,001 s oznacza

wartość okresu próbkowania obserwatora. Wyjściem obserwatora LESO są estymowane wartości prędkości

rotacji p est, przyspieszenia rotacji dp est oraz całkowitego zaburzenia f est.

W implementacji sterownika w programie MATLAB zostały także dodane bloki Scope umożliwiające

obserwację porównania przebiegów estymowanego całkowitego zaburzenia z prawdziwym całkowitym za-

burzeniem oraz porównania estymowanej wartości prędkości rotacji z wartością prawdziwą, oraz pręd-

kością z dodanym szumem pomiarowym. Wartość prawdziwego całkowitego zaburzenia jest obliczana

na podstawie równania (3.20).

Na rys. 4.36 przedstawiono układ sterowania po połączeniu wszystkich podsystemów. Poza podsyste-

mami zawierającymi sterownik, model mechanizmu oraz model rakiety, została także zaimplementowana

sekcja odpowiadająca za dodawanie szumu do wartości prędkości rotacji. Parametry szumu zostały do-

brane w taki sposób, aby był on w podobnej skali co szum pomiarowy wykorzystywanego czujnika.

Przyjęto, że jest to szum kolorowy powstający w wyniku przefiltrowania szumu białego o odchyleniu

standardowym równym 0,01 oraz wartości średniej równej 0 za pomocą filtra o transmitancji równej

Gn(s) =
1

av s+ 1
,

gdzie av = 0, 002.

Wskaźnik jakości oraz kosztu sterowania

Generator szumów pomiarowych

delta roll rate

Rocket

p_ref

p

u

ADRC

delta_z delta
delta_z delta

Servomechanism

p_true

133.1

Wskaźnik kosztu sterowania

e 2574

Wskaźnik jakości

Rysunek 4.36: Układ sterowania zaimplementowany w programie MATLAB

W modelu układu sterowania zamieszczono także bloki Display wyświetlające wartości wykorzysta-

nych całkowych wskaźników jakości sterownia i kosztu sterowania. Wykorzystanym wskaźnikiem jakości

50 Implementacja układu sterowania i modelu rakiety w środowisku MATLAB/Simulink

sterowania jest całka z kwadratu uchybu

Je =

∫ Tn

0

e2(t) dt, (4.3)

a wskaźnikiem kosztu sterowania jest całka z kwadratu sygnału sterującego

Ju =

∫ Tn

0

u2(t) dt, (4.4)

gdzie Tn jest czasem trwania symulacji.

4.3.2 Dobór parametrów sterownika

Początkowo parametry sterownika pętli zewnętrznej zostały wyznaczone, korzystając z równań (3.31)

i (3.32). Przyjęto, że pasmo przenoszenia obserwatora jest równe ω0 = 15 rad
s . Wartość pasma przenosze-

nia sterownika została dobrana w taki sposób, aby jego wartość była mniejsza niż pasma przenoszenia

obserwatora przyjmując wartość ωc = 0.5·ω0 = 7.5 rad
s . Wartość współczynnika tłumienia wynosiła ξ = 1.

Uzyskano w ten sposób wartości nastaw sterownika pętli zewnętrznej

k0 = 41, 2398,

k1 = 11, 8127.
(4.5)

Tak wyznaczone nastawy spełniają ograniczenia podane w równaniach (3.33), (3.34) i (3.35).

Konieczne było także dobranie wartości wzmocnienia b̂, które powinno być z zakresu (0; 176112⟩.
Wykorzystano wartość b̂ = 5000.

4.4 Wyniki działania układu sterowania w symulacji

Na rys. 4.37 przedstawiono prędkość rotacji rakiety z włączonym sterownikiem wykorzystującym wy-

znaczone wartości nastaw (4.5). Można zauważyć, że obiekt sterowania zachowuje stabilność kosztem

znacznych oscylacji. Widać także bardzo długi czas ustalania odpowiedzi. Prędkość rotacji zawiera się

w zakładanym tunelu ±20◦
s dopiero po upływie czasu ok. 10,33 s. Całkowy wskaźnik jakości osiągnął war-

tość równą ok. Je = 7, 753 · 105 a wskaźnik kosztu sterowania był równy ok. Ju = 846, 3, dla horyzontu

czasowego Tn ≈ 16,85 s. Ze względu na duże oscylacje oraz długi czas ustalania taka jakość sterowania
jest nieakceptowalna.

Na rys. 4.37 przedstawiono także wykres przebiegu sygnału sterującego. Na nim także widać bardzo

duże oscylacje powodujące m.in. wzrost kosztu sterowania.

Porównano także przebiegi prędkości rotacji rakiety z przebiegiem prędkości rotacji estymowanej przez

obserwator (rys. 4.38). Można zauważyć, że przez bardzo mocno ograniczone pasmo przenoszenia obserwa-

tora, estymowana prędkość rotacji znacznie różni się od prawdziwej wartości w przedziale czasu, w którym

występują duże oscylacje.

Wykreślono także przebiegi prawdziwego oraz estymowanego całkowitego zaburzenia. Wyniki przed-

stawiono na rys. 4.39. Można zauważyć, że w momencie występowania dużych oscylacji prędkości rotacji,

wartość estymowanego całkowitego zaburzenia znacznie odbiega od jego prawdziwej wartości. Po ustaniu

oscylacji, w końcowej fazie lotu, wartość estymowanego całkowitego zaburzenia zbiega w pobliże jego

prawdziwej wartości tj. ok. 255.

Przy wykorzystaniu nastaw wyznaczonych za pomocą równań (3.31) i (3.32) pojawiają się znaczne

oscylacje prędkości rotacji. Do tego czas ustalania znacznie przekracza zakładaną wartość 2 s. Obliczono

znormalizowany czas opóźnienia układu wykonawczego, wykorzystując wzór [30]

µ =
To

To + T
, (4.6)

4.4. Wyniki działania układu sterowania w symulacji 51

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0

200

400

600

800

Pr
dk

o
 ro

ta
cji

 [
/s

]

zakres akceptowalno ci ±20 s

Pr dko rotacji przy w czonym uk adzie sterowania

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Czas [s]

10

5

0

5

10

Za
da

ne
 w

yc
hy

le
ni

e
lo

te
k

st
er

uj
cy

ch
 [

] Zadane wychylenie lotek steruj cych

Rysunek 4.37: przebieg prędkości rotacji oraz zadanego wychylenie lotek sterujących podczas symulacji

gdzie To jest opóźnieniem transportowym, a T jest stałą czasową inercji w modelu serwomechanizmu

poruszającego lotkami sterującymi. Otrzymano µ ≈ 0, 56. Oznacza to, że opóźnienie czasowe jest porów-

nywalnej z T i tym samym obiekt jest trudny w sterowaniu.

Z tych powodów ponownie dobrano nastawy sterownika pętli zewnętrznej, wykorzystując metodę

heurystyczną. Do tego celu ograniczono wartość współczynnika tłumienia do wartości ξ = 0.08. Nastawy

sterownika zostały wyznaczone za pomocą równań (3.29) oraz (3.30) nieuwzględniających opóźnienia

transportowego, otrzymując

k0 = 58, 5225,

k1 = 1, 224.
(4.7)

Na wykresie widocznym na rys. 4.40 przedstawiono przebieg prędkości rotacji po zmianie wartości

nastaw sterownika. Można zauważyć, że w tym przypadku nie pojawiają się już tak znaczne oscylacje,

jak w przypadku symulacji wykorzystującej poprzednie nastawy sterownika. Na początku lotu rakiety

widoczne jest przeregulowanie do wartości ok. 64, 47
◦

s . Czas, po jakim prędkość rotacji osiąga zakła-

daną wartość ±20◦
s wynosi ok. 1,39 s, a co za tym idzie, jest mniejszy niż zakładany czas 2 s. Po zmianie

nastaw sterownika uzyskano wartość wskaźnika jakości na poziomie Je = 2574 oraz wskaźnika kosztu

sterowania na poziomie Ju = 133, 1, dla horyzontu czasowego Tn ≈ 16,85 s.
Na rys. 4.40 w przedstawiono także przebieg sygnału sterującego. Widać na nim, że zadany kąt wychy-

lenia lotek sterujących oscyluje wokół wartości ok. −2.9◦. Utrzymanie stosunkowo niskiej wartości sygnału

52 Implementacja układu sterowania i modelu rakiety w środowisku MATLAB/Simulink

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0

200

400

600

800

Pr
dk

o
 ro

ta
cji

 [
/s

]

Porównanie pr dko ci rotacji z jej estymat
Pr dko rotacji
Estymowana pr dko rotacji

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Czas [s]

0

100

200

300

400

Ró
ni

ca
 [

/s
]

Ró nica pomi dzy prawdziw a estymowan pr dko ci rotacji

Rysunek 4.38: Porównanie prawdziwej oraz estymowanej prędkości rotacji

sterującego bez oscylacji o znacznej amplitudzie pozwala na znaczne zmniejszenie kosztu sterowania.

Porównano także przebiegi prawdziwej oraz estymowanej wartości prędkości rotacji rakiety (rys. 4.41).

Można zauważyć, że po dobraniu nowego zestawu nastaw (4.7), poprzez wyeliminowanie znacznych oscyla-

cji, różnica pomiędzy przebiegiem prawdziwej oraz estymowanej prędkości rotacji utrzymuje się w zakresie

nieprzekraczającym ok. 4, 47
◦

s .

Na rys. 4.42 porównano prawdziwe oraz estymowane całkowite zaburzenie. Estymowane całkowite

zaburzenie podąża przebiegiem średniej kroczącej prawdziwego całkowitego zaburzenia. Widać jednak

bardzo duże zaszumienie sygnału prawdziwego zaburzenia wynikające z braku dostępu do prawdziwej

wartości zrywu rotacji.

Po włączeniu sterownika, mimo redukcji prędkości rotacji, lot rakiety odbywa się w sposób stabilny.

Można to zauważyć na rys. 4.43 przedstawiającym trajektorię lotu rakiety. Widać na nim, że rakieta

przez cały czas lotu porusza się prawie pionowo do góry (przesunięcie w osiach x i y układu globalnego

są nie większe niż 1m). Na rys. 4.44 oraz 4.45 przedstawiono prędkości kątowe rakiety wokół osi po-

przecznej i pionowej. Ich przebiegi pokazują, że rakieta delikatnie drga w tych osiach przez większość

lotu, a zauważalny wzrost prędkości kątowych następuje dopiero w pobliżu apogeum wysokości.

4.4. Wyniki działania układu sterowania w symulacji 53

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

Pr
aw

dz
iw

e
ca

k.
 za

bu
rz

en
ie

 [r
ad

/s
3] 1e5

przebieg d y do warto ci 255

Prawdziwe ca kowite zaburzenie

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

2

1

0

1

2

3

Es
ty

m
ow

an
e

ca
k.

 za
bu

rz
en

ie
 [r

ad
/s

3] 1e2 Estymowane ca kowite zaburzenie

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Czas [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
1e5 Ró nica pomi dzy prawdziwym i estymowanym zaburzeniem

Rysunek 4.39: Porównanie prawdziwego oraz estymowanego przebiegu całkowitego zaburzenia

54 Implementacja układu sterowania i modelu rakiety w środowisku MATLAB/Simulink

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0

10

20

30

40

50

60

Pr
dk

o
 ro

ta
cji

 [
/s

]

zakres akceptowalno ci ±20 s

osi gni cie zakresu akceptowalno ci po ok. 1,39 s

Pr dko rotacji przy w czonym uk adem sterowania

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Czas [s]

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Za
da

ne
 w

yc
hy

le
ni

e
lo

te
k

st
er

uj
cy

ch
 [

] Zadane wychylenie lotek steruj cych

Rysunek 4.40: Przebieg prędkości rotacji oraz zadane wychylenie lotek sterujących podczas symulacji (dla nastaw (4.7))

4.4. Wyniki działania układu sterowania w symulacji 55

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0

10

20

30

40

50

60

Pr
dk

o
 ro

ta
cji

 [
/s

]

Porównanie pr dko i rotacji z jej estymat
Pr dko rotacji
Estymowana pr dko rotacji

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Czas [s]

0

1

2

3

4

Ró
ni

ca
 [

/s
]

Ró nica pomi dzy prawdziw a estymowan warto ci

Rysunek 4.41: Porównanie prawdziwej oraz estymowanej wartości prędkości rotacji (dla nastaw (4.7))

56 Implementacja układu sterowania i modelu rakiety w środowisku MATLAB/Simulink

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
1000

500

0

500

1000

Porównanie estymowanego i prawdziwego zaburzenia

Prawdziwe ca kowite zaburzenie
rednia krocz ca prawdziwego ca kowitego zaburzenia

Estymowane ca kowite zaburzenie

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Czas [s]

0

200

400

600

800

1000

1200

Ró nica pomi dzy prawdziwym i estymowanym zaburzeniem

Rysunek 4.42: Porównanie prawdziwej oraz estymowanej wartości całkowitego zaburzenia (dla nastaw (4.7))

x [m]

0.0
0.2

0.4
0.6

0.8

y [
m]

0.0
0.2

0.4
0.6

0.8
1.0

h
[m

]

0
200
400
600
800
1000
1200
1400

Trajektoria lotu rakiety

Rysunek 4.43: Przebieg trajektorii rakiety w układzie ustalonym

4.4. Wyniki działania układu sterowania w symulacji 57

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Czas [s]

0.001

0.000

0.001

0.002

Pr
dk

o
 k

to
wa

 w
 o

si
pi

tc
h

[ra
d/

s]
Pr dko k towa w osi pitch

Rysunek 4.44: Przebieg prędkości kątowej rakiety w osi poprzecznej

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Czas [s]

0.006

0.005

0.004

0.003

0.002

0.001

0.000

0.001

0.002

Pr
dk

o
 k

to
wa

 w
 o

si
ya

w
[ra

d/
s]

Pr dko k towa w osi yaw

Rysunek 4.45: Przebieg prędkości kątowej rakiety w osi pionowej

Rozdział 5

Implementacja układu sterowania

na pokładzie rakiety sportowej

5.1 Projekt płytki drukowanej komputera pokładowego

W celu weryfikacji działania rzeczywistego układu sterowania zaprojektowano oraz wykonano kom-

puter pokładowy umożliwiający pomiar prędkości rotacji rakiety wokół osi podłużnej. Wymagane były

także wyjścia sterujące serwomechanizmami modelarskimi, poruszającymi lotkami sterującymi oraz moż-

liwość zapisu danych podczas działania układu sterowania.

Projekt płytki drukowanej (PCB, ang. printed circuit board) został wykonany przy użyciu oprogramo-

wania o otwartych źródłach (ang. opensource) KiCAD [6]. Pozwala ono na rysowanie ideowych schematów

elektronicznych, jak i projektu rozmieszczenia elementów wraz z łączącymi je ścieżkami.

5.1.1 Dobór elementów elektronicznych komputera pokładowego

Jako główną jednostkę obliczeniową wybrano mikrokontroler STM32F412RET6 [39]. Jest to 32-bitowy

mikrokontroler wyposażony w FPU (ang. Floating-Point Unit), czyli jednostkę wspomagającą mikrokon-

troler w obliczeniach wykonywanych na liczbach zmiennoprzecinkowych. Do wykorzystanego mikrokon-

trolera dobrano rezonator kwarcowy o częstotliwości 25 MHz, który jest źródłem bazowej częstotliwości

mikrokontrolera. Dzięki zawartej w mikrokontrolerze pętli PLL (ang. Phase Locked Loop) możliwe jest

zwiększenie częstotliwości taktowania rdzenia do wartości 96 MHz. Wybrany mikrokontroler współpra-

cuje z wieloma interfejsami komunikacyjnymi takimi jak UART, I2C, SPI, CAN czy SDIO. Pozwala także

na generowanie sygnałów PWM (ang. Pulse-Width Modulation).

Jako komponent służący do pomiaru prędkości rotacji rakiety został wybrany tzw. moduł IMU

(ang. Inertial Measurement Unit) typu BMI088 [15]. Jest to układ zawierający w sobie żyroskop oraz

akcelerometr. Moduł ten pozwala na komunikację z wykorzystaniem magistrali I2C oraz SPI, za po-

mocą których można pobierać wartości wykonanych pomiarów. Pomiar i akwizycja prędkości rotacji,

jak i przyspieszeń liniowych wykonywany jest wewnątrz układu za pomocą 16-bitowych przetworników

ADC, co pozwala na uzyskanie przy zakresie pomiaru do 2000
◦

s rozdzielczości na poziomie ok. 0, 061
◦

s .

Próbkowanie może odbywać się z maksymalną szybkością 2000 próbek na sekundę.

Zaprojektowany komputer pokładowy wyposażony jest także w gniazdo na kartę microSD oraz do-

datkowy moduł pamięci flash (ang. flash memory), które służą do zapisu danych podczas działania

układu sterowania. Jako główny sposób zapisu danych wybrano wykorzystanie karty microSD ze względu

na możliwość bezpośredniego przenoszenia zebranych danych na komputer. Komunikacja z kartą microSD

odbywa się za pomocą interfejsu SDIO. Dodatkowa pamięć flash jest zapasowym podzespołem, do któ-

rego mogą zostać zapisane dane np. w razie awarii karty microSD. Wybranym modułem pamięci flash

59

60 Implementacja układu sterowania na pokładzie rakiety sportowej

jest W25Q64 [45]. Jest to pamięć flash typu NOR o pojemności 64 Mb. Komunikacja z pamięcią odbywa

się za pomocą magistrali SPI od prędkości maksymalnej do 100 MHz.

Do zasilania komputera pokładowego została wykorzystana bateria 2S złożona z 2 ogniw Li-Ion.

Napięcie wyjściowe takiego pakietu ogniw to maksymalnie 8,4 V co pozwala na bezpośrednie zasilanie

serwomechanizmów modelarskich wykorzystanych do wychylania lotek sterujących. Wykorzystany mi-

krokontroler, jak i IMU oraz pamięci wykorzystywane do zapisu danych zasilane są z napięcia stałego

o wartości 3,3 V. Z tego powodu potrzebne było dobranie stabilizatora napięcia, który pozwoli zamie-

nić napięcie baterii na napięcie robocze podzespołów. Wybrano stabilizator TLV76633QWDRBRQ1 [40],

który pozwala na zamianę napięć z przedziału 2,5 V — 16 V na napięcie 3,3 V. Stabilizator ten cechuje

się tolerancją napięcia wyjściowego na poziomie ±0, 5% .

W celu ułatwienia obsługi komputera pokładowego dodano możliwość ładowania baterii za pomocą

ładowarki o napięciu wyjściowym 5V poprzez złącze USB micro typu B. Układ scalony zarządzający pro-

cesem ładowania baterii, jaki został wybrany podczas projektowania płytki PCB to MP2639AGR-Z [33].

Pozwala on na ładowanie pakietów ogniw 2S łącznie z balansowaniem serii ogniw (ang. cell balancing)

wchodzących w skład baterii tj. wyrównywaniem napięć na składowych ogniwach. Jest to konieczne, po-

nieważ ze względu na różnice we właściwościach użytych ogniw mogą one ładować się w różnym tempie.

Mogłoby to doprowadzić do nadmiernego naładowania jednego z ogniw w momencie, kiedy drugie z nich

nie byłoby jeszcze w pełni naładowane, co może prowadzić do szybszej degradacji baterii. Wykorzy-

stany układ posiada także zabezpieczenia nadprądowe, jak i możliwość podłączenia diod LED pełniących

funkcję wskaźnika naładowania baterii.

5.1.2 Projekt PCB

W pierwszym etapie projektowania płytki drukowanej komputera pokładowego przygotowano schemat

elektroniczny przedstawiający sposób połączenia wszystkich użytych elementów.

Na rys. 5.1 znajduje się fragment schematu przedstawiający sposób podłączenia użytego mikrokon-

trolera. Zasilany jest on napięciem 3,3 V z wykorzystaniem kondensatorów filtrujących C19 i C22-C26.

Dodatkowo zasilanie sekcji analogowej mikrokontrolera zostało podłączone poprzez koralik ferrytowy FB1

oraz kondensatory filtrujące C7 i C8. Ma to przeciwdziałać zakłóceniom na linii zasilającej ze strony in-

nych układów, które mogłyby zaburzyć poprawną pracę mikrokontrolera.

Podłączone zostały także rezonatory kwarcowe Y1 oraz Y2 razem z kondensatorami obciążającymi,

które są wykorzystywane przez mikrokontroler jako źródła podstawowych częstotliwości pracy procesora

oraz zegara czasu rzeczywistego RTC (ang. real-time clock).

Na rys. 5.1 widoczna jest także zworka JP1, która służy do resetowania układu. Układ resetowany

jest po podaniu stanu niskiego na wejście NRST, dlatego do zworki resetującej został dołączony rezy-

stor podciągający R1 wymuszający stan wysoki jako domyślny. Poza tym dołączony został kondensator

C1 służący do filtracji zakłóceń podczas przełączania stanu wejścia NRST co pozwala na uniknięcie

wielokrotnego resetowania mikrokontrolera.

Na rys. 5.2 przedstawiono fragment schematu, pokazujący sposób podłączeniu układu BMI088. Układ

zasilany jest napięciem 3,3 V poprzez kondensatory filtrujące C20 oraz C21. Został on podłączony do mi-

krokontrolera w taki sposób, aby możliwa była komunikacja z modułem żyroskopu oraz akcelerometru

za pomocą interfejsu SPI (wyjścia/wejścia MISO, MOSI, SCL, Gyro CS i Acc CS).

Na rys. 5.3 widoczny jest sposób podłączenia gniazda na kartę microSD. Karta pamięci zasilana jest

napięciem 3,3 V poprzez kondensator filtrujący C9. Można także zauważyć wymagane przez interfejs

SDIO rezystory podciągające R3 - R8 podłączone do linii komunikacyjnych.

Sposób podłączenia pamięci flash został przedstawiony na rys. 5.4. Na linii zasilającej pamięć z napię-

cia 3,3 V znajduje się kondensator C10 filtrujący zakłócenia. Pamięć wykorzystuje interfejs SPI do komu-

5.1. Projekt płytki drukowanej komputera pokładowego 61

Rysunek 5.1: Schemat elektroniczny podłączenia mikrokontrolera

Rysunek 5.2: Schemat elektroniczny podłączenia układu BMI088

nikacji z mikrokontrolerem (wejścia/wyjścia FLASH MISO, FLASH MOSI, FLASH CLK, FLASH CS).

Dodatkowo do wejścia FLASH CS podpięty został rezystor podciągający R9 wymuszający domyślny

stan wysoki co w przypadku interfejsu SPI oznacza brak zezwolenia na komunikację. Na wejściaWP oraz

HOLD został podany stan wysoki, aby wyłączyć opcję ochrony przed zapisem oraz trybu ignorowania

komunikatów przychodzących po interfejsie SPI.

Sposób, w jaki został podłączony stabilizator napięcia 3,3 V, został pokazany na rys. 5.5. Układ zasi-

lany jest bezpośrednio z baterii, a na jego wyjściu generowane jest napięcie 3,3 V. Na wyjściu, jak i wejściu

układu znajdują się kondensatory filtrujące zakłócenia na liniach zasilających. Dodatkowo do wyjścia

stabilizatora została dołączona dioda LED D7 sygnalizująca włączenie zasilania wraz z rezystorem R30

ograniczającym przepływ prądu. Zworka JP4 wraz z rezystorem R31 pozwala na włączanie oraz wyłą-

62 Implementacja układu sterowania na pokładzie rakiety sportowej

Rysunek 5.3: Schemat elektroniczny podłączenia gniazda na kartę microSD

Rysunek 5.4: Schemat elektroniczny podłączenia pamięci flash

Rysunek 5.5: Schemat elektroniczny podłączenia stabilizatora napięcia

czanie stabilizatora poprzez zmianę stanu na wejściu EN.

Schemat podłączenia układu zarządzającego ładowanie baterii przedstawiono na rys. 5.6. Do wejścia

układu podłączone jest napięcie 5 V pochodzące ze złącza USB micro B, a do wyjścia podłączona jest

bateria zasilająca komputer pokładowy. Na wejściu, jak i wyjściu układu znajdują się kondensatory C12

i C14 filtrujące zakłócenia na liniach zasilających. Widoczne są także diody LED D1 - D5, które sygna-

lizują tryb działania układu, jak i stan naładowania baterii. Wartości pozostałych elementów pasywnych

są, według dokumentacji użytego układu [33], wymagane do poprawnego działania. Na schemacie na

rys. 5.6 widoczny jest także sposób podłączenia ogniw BT1, BT2 baterii zasilającej komputer.

Rys. 5.7 przedstawia sposób podłączenia wyjść sterujących serwomechanizmami modelarskimi. Ser-

womechanizmy zasilane są bezpośrednio z baterii zasilającej komputer pokładowy poprzez tranzystor Q2

MOSFET z kanałem N, który pełni rolę klucza załączającego zasilanie. Rezystor R20 pełni rolę ogra-

nicznika prądu bramki tranzystora, a rezystor R21 służy do podciągnięcia bramki tranzystora do masy

w celu uniknięcia stanów nieustalonych.

5.1. Projekt płytki drukowanej komputera pokładowego 63

Rysunek 5.6: Schemat elektroniczny podłączenia układu ładującego baterię

Rysunek 5.7: Schemat elektroniczny wyprowadzeń sterujących serwomechanizmów

Na rys. 5.8 przedstawiono schemat wyprowadzeń komputera pokładowego. Został on wyposażony

w złącza J4 i J5, służące do podłączenia dodatkowego modułu enkodera magnetycznego. Złącze J3 służy

do podłączenia programatora mikrokontrolera. Złącza J1, J2 i J12 służą jako dodatkowe wyprowadze-

nia interfejsów komunikacyjnych UART, I2C oraz SPI ułatwiające rozbudowę funkcjonalności komputera.

Komputer został także wyposażony w złącze J11, które zawiera jedno z wyjść cyfrowych mikrokontrolera.

Może ono służyć do celów weryfikacji działania komputera. Dioda LED D6 została dodana jako dioda

sygnalizująca uruchomienie oprogramowania komputera pokładowego. Dzięki naprzemiennemu przełą-

czaniu zasilania diody za pomocą wyjścia cyfrowego możliwa jest sygnalizacja zawieszenia się systemu

operacyjnego komputera (tzw. heartbeat).

Rysunek 5.9 przedstawia wizualizację płytki drukowanej komputera pokładowego, na której widać

rozmieszczenie wszystkich zastosowanych elementów. Widać na nim także ścieżki obwodu drukowanego

łączące podzespoły komputera. Szerokość ścieżek została dobrana w zależności od obciążenia prądem.

Dodatkowo ścieżki linii komunikacyjnych pamięci flash oraz kart microSD zostały wyrównane pod wzglę-

dem długości, aby zapewnić zbliżony czas propagacji sygnałów. Taki zabieg jest wymagany w przypadku

64 Implementacja układu sterowania na pokładzie rakiety sportowej

Rysunek 5.8: Schemat elektroniczny wyprowadzeń komputera pokładowego

karty microSD do jej poprawnego i powtarzalnego funkcjonowania. W przypadku pamięci flash pozwala to

na bezproblemowe przeprowadzenie komunikacji z wykorzystaniem interfejsu SPI przy szybkości transmi-

sji rzędu 100 MHz. Układ IMU BMI088 został umiejscowiony w równych odległościach od górnej i dolnej

krawędzi płytki, a na samej płytce drukowanej został oznaczony układ współrzędnych żyroskopu.

moduł żyroskopu

z oznaczeniem układu współrzędnych

Rysunek 5.9: Wizualizacja płytki drukowanej komputera pokładowego

Wykonany komputer pokładowy został przedstawiony na rys. 5.10. Poza komputerem widoczna jest

także bateria zasilająca komputer podczas ładowania za pomocą ładowarki 5 V USB.

5.2. Oprogramowanie komputera pokładowego 65

Rysunek 5.10: Zdjęcie wykonanego komputera pokładowego

5.2 Oprogramowanie komputera pokładowego

W związku z tym, że wybraną jednostką obliczeniową jest mikrokontroler z rodziny STM32, zde-

cydowano się wykorzystać dedykowane środowisko programistyczne STM32CubeIDE [38]. Pozwala ono

na szczegółowe zdefiniowanie pracy peryferiów oraz na zaawansowaną konfigurację. Wspomniane środowi-

sko wspiera również implementację systemu czasu rzeczywistego. Kod został napisany za pośrednictwem

oprogramowania umożliwiającego obsługę warstwy abstrakcji sprzętowej HAL ang. hardware abstraction

layer. Wykorzystanymi językami programowania są C oraz C++.

Oprogramowanie komputera pokładowego wymagało napisania własnych interfejsów oraz bibliotek.

Interfejs obsługujący zbieranie danych z żyroskopu został napisany na podstawie bibliotek udostępnionych

przez producenta [14]. Biblioteka do obsługi serwomechanizmów została wykonana z wykorzystaniem

interfejsu HAL. Zapisywanie danych na karcie SD realizowane jest za pomocą systemu plików FatFS

[4], który również jest wspierany przez środowisko STM32CubeIDE. Dodatkowo układ pamięci flash

obsługiwany jest poprzez zrewidowaną bibliotekę wykorzystywaną w ramach działalności koła naukowego

PUT Rocketlab.

Kod został napisany z wykorzystaniem interfejsu CMSIS-RTOS API v2 [2] opartego na systemie ope-

racyjnym czasu rzeczywistego FreeRTOS [5]. Wykorzystanie tego podejścia programistycznego umożliwiło

efektywne wykonywanie zadań przez mikrokontroler.

5.2.1 Opis architektury oprogramowania

Z racji tego, że wykorzystany został system czasu rzeczywistego, zadania zostały rozdzielone na wątki.

Na rys. 5.11 przedstawiona jest poglądowa architektura oprogramowania, gdzie kolorem niebieskim ozna-

czono wątki, a kolorem zielonym sprzętową obsługę przerwań.

66 Implementacja układu sterowania na pokładzie rakiety sportowej

ADRC TASK CONTROL TASKPRZERWANIE

zadana pozycja lotki

pakiet danych

wyzwolenie odczytu

 pomiaru

potwierdzenie zadania
pozycji lotki

LOGGER TASK

Rysunek 5.11: Poglądowy schemat architektury oprogramowania komputera pokładowego

Wątek opisany jako ADRC task, początkowo oczekuje na zwolnienie semafora poprzez funkcję

OsSemaphoreAcquire. Widoczne jest to w pierwszej linii na listingu 5.1 fragmentu kodu pochodzącego

z nieskończonej pętli wątku.

1 osSemaphoreAcquire(SensorSampleSemHandle,osWaitForever);

2 auto gyroData = bmi088.readGyroData();

3

4 taskENTER_CRITICAL();

5 auto test = gyroData.x * (float)M_PI / 180.f;

6 adrc.calculateLESO(gyroData.x * (float)M_PI / 180.f);

7 taskEXIT_CRITICAL();

8

9 if (osSemaphoreAcquire(ControlCheckSemHandle,0) == osOK) {

10 taskENTER_CRITICAL();

11 position = adrc.calculatePosition(0, gyroData.x * (float)M_PI / 180.f);

12 xTaskNotify((TaskHandle_t)ControlTaskHandle, *reinterpret_cast<uint32_t*>(&position),

↪→ eSetBits);
13 taskEXIT_CRITICAL();

14 }

Listing 5.1: Fragment kodu z wątku ADRC task

Semafor zostaje zwolniony przez przerwanie pochodzące od sprzętowego licznika (ang. timer) tak jak

jest to wskazane na rys. 5.11. Licznik ustawiony na odmierzanie 1 ms, po upływie tego czasu zwalnia

semafor. Dzięki temu kod jest wykonywany dalej, a następnie funkcja readGyroData() z listingu 5.1 doko-

nuje pomiaru aktualnej prędkości rotacji. Następnie obliczenia pętli adaptacji zostają zamknięte w sekcji

krytycznej, która zapewnia obliczenie estymat bez zmiany kontekstu. Kolejnym krokiem jest obliczenie

zadanej pozycji lotki oraz wysłanie jej za pomocą struktury task notification (co widoczne jest w liniach

10-13 na listingu 5.1) do wątku sterującego układem wykonawczym. Wspomniany fragment kodu zostaje

zamknięty również w sekcji krytycznej, co zapewnia nieprzerwanie wykonywanej operacji przez planistę

(ang. scheduler). Task notification jest to struktura pozwalająca na wysłanie informacji bezpośrednio

do wskazanego wątku, co zapewnia szybsze przekazanie wiadomości. Następne obliczenie oraz wysłanie

kolejnej pozycji lotki uzależnione jest od potwierdzenia zadania pozycji przez wątek Control task. Takie

zabezpieczenie pozwala na zadanie pozycji mimo ewentualnych opóźnień. Jednocześnie pozwala to obser-

watorowi LESO nieprzerwanie wyliczać estymaty. Przy dynamice charakterystycznej dla wytwarzanych

rakiet badawczych, LESO dalej dostaje informacje i pozwala przy opóźnieniu wykonywania zadań przez

wątek Control task na obliczanie aktualnych estymat, co bezpośrednio skutkuje obliczeniem odpowied-

5.2. Oprogramowanie komputera pokładowego 67

niej pozycji lotki. Do innych zadań wątku ADRC task należy wysłanie pakietu danych w zdefiniowanej

strukturze za pośrednictwem kolejki do wątku Logger task.

Control task jest wątkiem, który obsługuje sterowanie serwomechanizmów będących częścią układu

wykonawczego. Początkowo wspomniany wątek oczekuje na pojawienie się informacji, następnie obliczona

pozycja podawana jest po przeliczeniu przez funkcję przełożenia zadanej pozycji lotki sterującej na po-

łożenie kątowe serwomechanizmu na układ wykonawczy. Na końcu ustawiane jest potwierdzenie zadania

pozycji poprzez zwolnienie semafora. Sterowanie serwomechanizmami jest realizowane przez jeden licznik,

co zapewnia synchronizację.

Do zadań wątku Logger task należy odbieranie pakietu danych z kolejki wysyłanej z wątku ADRC

task oraz zapis na kartę SD.

5.2.2 Implementacja sterownika ADRC w oprogramowaniu komputera

Sterownik ADRC został rozdzielony na obliczenia dotyczące obserwatora oraz zadanej pozycji lo-

tek sterujących. Obserwator LESO został zaimplementowany za pomocą wzoru (3.12). Fragment kodu

przedstawiający wspomnianą implementacje znajduje się na listingu 5.2.

1 Vector LESO::estimate(float u, float rollRateSensor) {

2 x_est_[0] = p_est_;

3 x_est_[1] = dp_est_;

4 x_est_[2] = f_est_;

5

6 for (uint8_t i = uBuffer_.size() - 1; i > 0; i--) {

7 uBuffer_[i] = uBuffer_[i - 1];

8 }

9

10 uBuffer_[0] = u;

11

12 // estymacja predkosci roll

13 xp_est_[0] = (Ad_[0][0] * x_est_[0] + Ad_[0][1] * x_est_[1] + Ad_[0][2] * x_est_[2]) +

↪→ Bd_[0] * uBuffer_[24] + Od_[0] * (rollRateSensor - p_est_);
14 // estymacja przyspieszenia roll

15 xp_est_[1] = (Ad_[1][0] * x_est_[0] + Ad_[1][1] * x_est_[1] + Ad_[1][2] * x_est_[2]) +

↪→ Bd_[1] * uBuffer_[24] + Od_[1] * (rollRateSensor - p_est_);
16 // estymacja calkowitego zaburzenia

17 xp_est_[2] = (Ad_[2][0] * x_est_[0] + Ad_[2][1] * x_est_[1] + Ad_[2][2] * x_est_[2]) +

↪→ Bd_[2] * uBuffer_[24] + Od_[2] * (rollRateSensor - p_est_);
18

19 p_est_ = xp_est_[0];

20 dp_est_ = xp_est_[1];

21 f_est_ = xp_est_[2];

22

23 return xp_est_;

24 }

Listing 5.2: Fragment kodu z biblioteki LESO

Początkowo do wektora zmiennych stanu przypisywane są wartości z poprzedniej chwili czasowej. Następ-

nie dodawane jest opóźnienie sygnału sterującego. Po tym obliczane są kolejne estymaty na podstawie

wcześniej zdefiniowanych macierzy oraz aktualnych danych. Na końcu zapisywane są wartości z aktualnej

chwili czasowej do tymczasowej pamięci mikrokontrolera.

68 Implementacja układu sterowania na pokładzie rakiety sportowej

Zadana pozycja lotek sterujących obliczana jest w bibliotece ADRC. Fragment kodu przedstawiający

wspomnianą implementacje widoczny jest na listingu 5.3.

1 float ADRC::calculatePosition(float targetPostion, float rollRateSensor){

2 float error, u_kpd, u;

3

4 //uchyb

5 error = targetPostion - rollRateSensor;

6 // sterownik proporcjonalno - roniczkujcy

7 u_kpd = kp_ * error + kd_ * (error - prev_error_) / Tc_;

8 prev_error_ = error;

9 // sygnal sterujacy

10 u = (u_kpd - f_est_) / b_est_;

11

12 // saturacja

13 if (u < -saturation_) {

14 u = -saturation_;

15 } else if (u > saturation_) {

16 u = saturation_;

17 }

18

19 u_ = u; // przypisanie wartosci sygnau sterujcego dla LESO

20 return u;

21 }

Listing 5.3: Fragment kodu z biblioteki ADRC

Początkowo obliczany jest uchyb, który następnie zostaje wykorzystany przez sterownik PD. Następnie 10.

linia kodu z listingu 5.3 przedstawia obliczenie sygnału sterującego na podstawie wzoru (3.5). Ostatecznie

sygnał sterujący sprawdzany jest poprzez warunki ograniczenia.

5.2.3 Sposób zapisu danych pomiarowych

Dane z wątku ADRC task wysyłane są za pośrednictwem kolejki struktur do wątku Logger task

(rys. 5.11). Zdefiniowana struktura pakietu danych przedstawiona jest na listingu 5.4.

1 struct LoggerDataADRC{

2 uint32_t timeStamp{};

3 float setPosition{};

4 float rollRate{};

5 float p_est{};

6 float dp_est{};

7 float f_est{};

8 };

Listing 5.4: Fragment kodu przedstawiający strukture danych

Pakiet danych zawiera informacje o aktualnej próbce czasowej [ms], zadanej pozycji lotek sterujących

[rad], prędkości rotacji z żyroskopu [degs], estymowanej prędkości rotacji [rads], estymowanym przyspiesze-

niu [rads2] oraz całkowitym zaburzeniu [rads3].

Zapis danych na kartę SD odbywa się co 100 struktur zdefiniowanych na listingu 5.4. Taka praktyka

pozwala na oszczędzeniu czasu na zamykaniu i otwieraniu pliku. Dane zapisywane są na kartę SD poprzez

5.3. Weryfikacja działania oprogramowania komputera 69

4-bitowy interfejs SDIO z taktowaniem 48 MHz. Taki dobór parametrów komunikacji pozwala na zapis

wszystkich danych z taktowaniem 1000 Hz.

5.3 Weryfikacja działania oprogramowania komputera

W związku z napisaniem oprogramowania oraz projektem płytki drukowanej wykonano wstępne testy

poprawności działania. Zweryfikowano komputer pokładowy pod względem działania oprogramowania

oraz efektywności żyroskopu.

5.3.1 Test oprogramowania komputera pokładowego

Do weryfikacji działania postanowiono zmierzyć czas obliczeń sterownika ADRC. Kryterium akceptacji

testu jest następujące: czas obliczeń sterownika powinien zajmować do 1
10Tp (10% pętli taktowania), gdzie

Tp oznacza okres próbkowania układu [12]. Kryterium to jest praktyczną zasadą czasu obliczeń związanych

ze sterownikiem dla implementacji na jednostkach obliczeniowych.

Do wykonania wspomnianego testu został wykorzystany oscyloskop. Test polegał na wystawianiu

stanu wysokiego na pinie GPIO przy starcie obliczeń ADRC, a następnie wystawianie stanu niskiego

po ich zakończeniu. Dzięki temu wygenerowany został sygnał prostokątny o wypełnieniu równym czasu

obliczeń sterownika, który został przedstawiony na rys. 5.12.

0.06000 0.06025 0.06050 0.06075 0.06100 0.06125 0.06150 0.06175 0.06200
Czas[s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Na
pi

cie
[V

]

Przebieg dzia ania oprogramowania komputera pok adowego

Rysunek 5.12: Wyniki weryfikacji działania oprogramowania komputera pokładowego

Pomiary częstotliwości taktowania oraz wypełnienia zostały wykonane przez oscyloskop i wynoszą:

• częstotliwość taktowania: 1000 Hz (1 ms),

• wypełnienie 5.98 %.

W efekcie czas obliczeń sterownika ADRC jest równy procentowo 5.98% okresu próbkowania, co spełnia

kryterium akceptacji oprogramowania komputera pokładowego.

70 Implementacja układu sterowania na pokładzie rakiety sportowej

5.3.2 Test czujnika żyroskopowego komputera pokładowego

Test czujnika żyroskopowego komputera pokładowego sprawdza poprawność działania napisanej bi-

blioteki i implementacji sprzętowej. Polega on na pozostawieniu komputera w pozycji nieruchomej i zebra-

niu danych z żyroskopu. Zebrane wyniki pozwolą zweryfikować poprawność działania napisanej biblioteki,

implementacji sprzętowej oraz efektywność montażu. Kryterium akceptacji jest osiągnięcie ±1
◦

s szumu

wokół zerowej prędkości rotacji. Wskazany zakres prędkości rotacji pokrywa niepewności podane przez

producenta [15] oraz akceptowalny wpływ błędu wynikający z montażu. Na rys. 5.13 widoczny jest prze-

bieg wykonanego testu, dla którego okres próbkowania danych wynosi Tp = 0, 001s.

0 1 2 3 4 5
Czas [s]

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Pr
dk

o
 ro

ta
cji

 [°
/s

]

Test czujnika yroskopowego komputera pok adowego
Dane pomiarowe z yroskopu
rednia danych pomiarowych z yroskopu

Rysunek 5.13: Wynik testu czujnika żyroskopowego komputera pokładowego

Na przebiegu 5.13 widoczne jest, że stała składowa przesunięta jest do wartości około 0.36
◦

s . Wynika

to z charakterystyki zastosowanego czujnika. Mimo tego maksymalne bezwzględne wartości prędkości

rotacji mieszczą się w zakresie ±1
◦

s . Kryterium akceptacji zostało, więc spełnione.

5.4 Budowa i opis działania mechanizmu wykonawczego poruszającego

lotkami sterującymi

W związku tym, że zaproponowany układ regulacji został zaprojektowany dla lotów poddźwiękowych,

układ wykonawczy musi spełniać określone wymagania. Założeniami projektowymi układu wykonawczego

była wytrzymałość na przewidywane obciążenia oraz wymagana rozdzielczość sterowania. Za projekt

mechanizmu pozwalającego na zadanie odpowiednich kątów wychylenia lotek sterujących odpowiedzialni

byli: Bartosz Buda i dr inż. Bartosz Ziegler z koła naukowego PUT Rocketlab.

Jest kilka możliwości realizacji wspomnianego układu wykonawczego spełniającego wyżej opisane

wymogi. Zdecydowano się wykorzystać mechanizm orczykowy, który spełnia założenia projektowe. Do jego

5.4. Budowa i opis działania mechanizmu wykonawczego poruszającego lotkami sterującymi 71

potencjalnych wad należą zwykle duże luzy występujące na połączeniach, które postanowiono zmniejszyć

odpowiednio ciasnymi połączeniami mechanicznymi.

Zakładane, maksymalne kąty wychyleń powierzchni sterowych wynoszą ±10◦. W tak niewielkim za-

kresie kątów przy prędkościach rakiety układ jest w stanie generować znaczne momenty siły (rzędu kilku

niutonometrów). Z tego powodu konieczne było zaprojektowanie odpowiedniego przełożenia pozwala-

jące na dokładniejsze sterowanie. Wykres wartości przełożenia od lotki sterującej dla zaprojektowanego

układu wykonawczego widoczny jest na rys. 5.14. Można zauważyć, że przełożenie znajduje się w zakresie

około [0.17; 0.225] w zależności od wychylenia lotki sterującej.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
Po o enie lotki steruj cej []

0.17

0.18

0.19

0.20

0.21

0.22

W
ar

to
 p

rz
e

o
en

ia
 [

]

Wyznaczenie prze o enia mechanizmu

Rysunek 5.14: Wykres przełożenia dla układu wykonawczego

W związku z przewidywanymi obciążeniami oraz rygorem szybkiej reakcji układu mechanicznego

koniecznością było dobranie odpowiedniego serwomechanizmu. Wybrano model Power HD R12-S [9].

Wspomniany serwomechanizm pracuje przy napięciu roboczym od 6 do 8,4 V, co pozwala na zasilanie

bezpośrednio z baterii 2S. Generuje moment wynoszący około 0,9 – 1,2 Nm. Innym ważnym parametrem

jest szybkość sterowania, która dla tego serwomechanizmu wynosi 857.14
◦

s przy napięciu zasilania 6 V oraz

1000
◦

s przy napięciu 7,4 V. Układ wykonawczy został zaprojektowany tak, że każda powierzchnia sterowa

jest połączona z serwomechanizmem przez dwa orczyki. Ich parametry geometryczne determinują przeło-

żenie oraz możliwe aplikowane obciążenie. Lotki sterujące sterowane są z osobnych serw. Dodatkowo układ

wykonawczy posiada mocowanie dostosowane do dwóch modułów enkoderów magnetycznych. Głównym

układem na wspomnianej płytce drukowanej jest enkoder inkrementalny, magnetyczny AM4096 [3]. Pozo-

stałymi komponentami są elementy pasywne, wykorzystywane głównie do filtracji zasilania. Na rys. 5.16

oraz rys. 5.15 znajdują się widoki górny i dolny wspomnianej płytki. Enkoder działa na zasadzie czujnika

Halla, wykrywając pole magnetyczne. Magnes umieszczany jest typowo 0,5-1,5 mm od układu scalonego

enkodera magnetycznego. Dodatkowo wykorzystywany magnes, musi być namagnesowany radialnie. Na

rys. 5.17 przedstawiony jest widok mechanizmu wykonawczego bez górnej podstawy. Owalny magnes

znajduje się na końcu wałka podtrzymującego powierzchnie sterowe. Widoczne są również moduły enko-

dera magnetycznego umieszczone w odpowiedniej odległości od magnesów. Gdy wałek się obraca, a co

za tym idzie również magnes, enkoder generuje przebieg prostokątny, który jest wykorzystywany przez

72 Implementacja układu sterowania na pokładzie rakiety sportowej

mikrokontroler do wyznaczenia położenia kątowego. Układ ten pozwala na ustawianie pozycji zera oraz

mierzy obrót z rozdzielczością 12 bitów.

Rysunek 5.15: Widok modułu enkodera magnetycznego z góry

Rysunek 5.16: Widok modułu enkodera magnetycznego z dołu

Rysunek 5.17:Widok modułu enkodera magnetycznego zamontowanego do mechanizmu. Projekt: Bartosz Buda, dr inż.
Bartosz Ziegler, PUT Rocketlab. Wykonanie: PUT Rocketlab

Całościowo widok zaprojektowanego mechanizmu został przedstawiony na rys 5.18. Na rys. 5.19 przed-

stawiony jest również szczegółowy widok mechanizmu z wyodrębnionymi kolorystycznie elementami.

5.4. Budowa i opis działania mechanizmu wykonawczego poruszającego lotkami sterującymi 73

Serwomechanizm

Lotka sterująca

Enkoder

Rysunek 5.18: Widok mechanizmu wykonawczego. Projekt: Bartosz Buda, dr inż. Bartosz Ziegler, PUT Rocketlab.
Wykonanie: PUT Rocketlab

Text

Orczyk na wale

serwomechanizmu

Cięgno (orczyk)

Oś lotki sterującej

Łożysko ślizgowe

Orczyk

Rysunek 5.19: Szczegółowy widok mechanizmu wykonawczego. Projekt: Bartosz Buda, dr inż. Bartosz Ziegler, PUT
Rocketlab. Wykonanie: PUT Rocketlab

74 Implementacja układu sterowania na pokładzie rakiety sportowej

Lotki, podstawa górna, montowanie serwomechanizmów oraz łożyska ślizgowe wykonane zostały po-

przez druk 3D. W tym celu wykorzystano materiał PETG. Wałki podtrzymujące powierzchnie sterowe

zostały wytoczone z aluminium. Materiałem okrągłych orczyków (orczyki na wale serwomechanizmów)

jest również aluminium. Rzeczywiste widoki wykonanego układu wykonawczego znajdują się na rys. 5.22

oraz 5.23.

5.5 Identyfikacja modelu układu wykonawczego poruszającego lotkami

sterującymi

5.5.1 Wyznaczenie charakterystyki statycznej

W związku z zastosowaniem układu wykonawczego ze zmiennym przełożeniem (rys. 5.14) konieczne

jest wyprowadzenie charakterystyki opisującej położenie lotki sterującej w zależności od położenia wału

serwomechanizmu. Do wykonania wspomnianej identyfikacji wykorzystano układ wykonawczy, kompu-

ter pokładowy oraz moduły enkoderów magnetycznych (rys. 5.15, 5.16) do zebrania pomiarów. Widok

wykorzystanego mechanizmu wraz z zamontowanymi enkoderami znajduje się na rys. 5.18.

W celu wyznaczenia charakterystyki podawano na serwomechanizm pozycję z zakresu [−65◦; 65◦]

ze skokiem 0.5◦. Wartość przesunięcia kątowego zmierzona została poprzez enkoder magnetyczny. Na-

stępnie wielomian trzeciego stopnia został dopasowany do danych pomiarowych:

f(δ) = 0.00816074 · δ3 + 0.07168273 · δ2 + 4.62038378 · δ,

gdzie: δ oznacza pozycję lotki sterującej. Po podstawieniu wartości δ uzyskiwana jest wymagana pozycja

podawana na serwomechanizm. Wynikowa krzywa była przesunięta od punktu (0, 0), co bezpośrednio

wynika z luzów w układzie wykonawczym. Postanowiono usunąć wspomniane przesunięcie (przesunąć

krzywą do zera w osi y), z tego względu, że błąd sterowania wynikający z powstawania luzów w układzie

wykonawczym jest akceptowalny oraz sterownik bierze pod uwagę niepewności strukturalne modelu. Dane

pomiarowe, dopasowany wielomian oraz zaaplikowane przesunięcie przedstawione są na rys. 5.20.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
Po o enie lotki steruj cej []

40

20

0

20

40

Po
o

en
ie

 se
rw

om
ec

ha
ni

zm
u

[
]

Wyznaczenie charakterystyki statycznej mechanizmu
dane pomiarowe
dopasowana krzywa
dopasowana krzywa po usuni ciu przesuni cia

Rysunek 5.20: Charakterystyka statyczna układu wykonawczego

5.5. Identyfikacja modelu układu wykonawczego poruszającego lotkami sterującymi 75

5.5.2 Wyznaczenie modelu dynamiki układu wykonawczego poruszającego

lotkami sterującymi

Układ wykonawczy został zidentyfikowany również pod względem dynamicznym. Wykonano serię

pomiarów, do których następnie zostało dopasowane równanie modelu. Do przeprowadzenia badania

wykorzystano układ wykonawczy wraz z enkoderami oraz komputer pokładowy. Identyfikację modelu

przeprowadzono na podstawie odpowiedzi skokowej. Okres próbkowania, z jakim zbierano dane, wynosił

1 ms. Wykorzystując wyznaczoną charakterystykę statyczną podano wymuszenie w postaci zadanego

kąta wychylenia lotki sterującej na wejście serwomechanizmu wynoszące 5◦ w chwili zerowej. Wyniki dla

trzech serii pomiarów, zadanego sygnału wejściowego oraz wyznaczonego modelu znajdują się na rys.

5.21.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Czas [s]

0

1

2

3

4

5

Po
o

en
ie

 lo
tk

i s
te

ru
j

ce
j [

]

Wyznaczenie modelu mechanizmu

sygna wej ciowy
dane pomiarowe nr 1
dane pomiarowe nr 2
dane pomiarowe nr 3
model

Rysunek 5.21: Wyniki wyznaczania charakterystyki dynamicznej

Na podstawie danych pomiarowych przyjęto strukturę modelu w postaci:

Gs(s) ≜
ke−sT0

1 + sT
,

gdzie:

Gs(s) ≜
∆(s)

∆z(s)
,

gdzie: ∆(s) jest sygnałem δ (pozycja lotki sterującej) zapisanym w dziedzinie Laplace’a oraz ∆z(s) jest

sygnałem δz (pozycja zadana lotki sterującej) zapisanym w dziedzinie Laplace’a. Zidentyfikowany model

jest, więc inercją pierwszego rzędu z opóźnieniem. Wykorzystując metodę najmniejszych kwadratów,

zidentyfikowano parametry przyjętej struktury modelu jako: T0 = 0.025, stała czasowa: T = 0.0197 oraz

wzmocnienie w przybliżeniu wynoszące k = 1. Model w postaci transmitancji przedstawia się następująco:

Ĝ(s) =
1

1 + 0.0197s
· e−0.025s.

76 Implementacja układu sterowania na pokładzie rakiety sportowej

Rysunek 5.22: Widok boczny wykonanego mechanizmu wykonawczego. Projekt: Bartosz Buda, dr inż. Bartosz Ziegler,
PUT Rocketlab. Wykonanie: PUT Rocketlab

5.5. Identyfikacja modelu układu wykonawczego poruszającego lotkami sterującymi 77

Rysunek 5.23: Widok wykonanego mechanizmu wykonawczego. Projekt: Bartosz Buda, dr inż. Bartosz Ziegler, PUT
Rocketlab. Wykonanie: PUT Rocketlab

Rozdział 6

Stanowisko testowe i wyniki eksperymentów

6.1 Opis stanowiska testowego

Do wstępnego sprawdzenia systemu sterowania (komputer pokładowy, układ wykonawczy, sterow-

nik) postanowiono wykorzystać tunel aerodynamiczny. Na jego podstawie zaprojektowano eksperyment.

Projekt stanowiska testowego został wykonany we współpracy z PUT Rocketlab.

Schematyczna zasada działania stanowiska testowego została przedstawiona na rys. 6.1.

Kierunek przepływu powietrza

4

1

23
5

Rysunek 6.1: Schematyczny widok zasady działania stanowiska doświadczalnego w tunelu aerodynamicznym

Na rys. 6.1 widoczny jest obszar tunelu aerodynamicznego oraz przepływ powietrza. Odniesienie

oznaczone numerem 1 na rys. 6.1 jest mocowaniem części korpusu rakiety. Następnie 2 wskazuje na tylne

mocowanie wraz z lotkami, które bezpośrednio wprowadzają asymetrię (przez przekrzywienie względem

osi podłużnej), co skutkuje powstawaniem niezerowej prędkości rotacji. Dalej 3 wskazuje korpus rakiety,

w którym umieszczony jest układ wykonawczy wraz z komputerem pokładowym. Ruchome powierzchnie

sterowe kompensujące prędkość rotacji oznaczone są numerem 4. W celu jak najbardziej rzeczywistego

odzwierciedlenia warunków lotu rakiety oraz niezakłócania przepływu, na przedniej części korpusu rakiety

umieszczona jest głowica (5 na rys. 6.1).

Zasada generowania prędkości rotacji schematycznie przedstawiona na rys. 6.1 polega na umieszczeniu

tylnych lotek pod kątem, na które napiera przepływ powietrza. W ten sposób generowany jest moment,

którego schematycznie zwrot oznaczony jest poprzez strzałkę. Układ wykonawczy wychyla lotki sterujące

i generuje moment kompensujący ruch wirowy rakiety.

79

80 Stanowisko testowe i wyniki eksperymentów

Zaprojektowana część generująca niezerowe prędkości rotacji przedstawiona jest na rys. 6.2 oraz 6.3.

Wymiary mocowania wynoszą w najszerszej średnicy 77,5 mm, natomiast średnica części wchodzącej

do korpusu wynosi 72,5 mm. Wysokość mocowania lotek generujących prędkość rotacji wynosi 70 mm.

We wspomnianym elemencie znajdują się dwa wgłębienia na łożyska kulkowe 6202ZZ. Przez środek

łożysk przechodzi pręt stalowy o średnicy 15mm. Złożenie wspomnianych elementów wraz z mocowaniem

do profilu widoczne jest na rys. 6.4.

Rysunek 6.2: Mocowanie dolne korpusu rakiety widok z dołu. Projekt oraz wykonanie: PUT Rocketlab

Rysunek 6.3: Mocowanie dolne korpusu rakiety widok z dołu. Projekt oraz wykonanie: PUT Rocketlab

6.1. Opis stanowiska testowego 81

Rysunek 6.4: Mocowanie korpusu rakiety w tunelu aerodynamicznym, widok boczny. Projekt oraz wykonanie: PUT
Rocketlab

Lotki widoczne na rys 6.4 mają przekrój NACA0018 [16]. Został on ustandaryzowany przez komitet

NACA (ang. The National Advisory Committee for Aeronautics). Jest to przekrój, który ma zdefiniowane

zależności geometryczne oraz parametry aerodynamiczne. Dzięki temu stanowisko testowe jest łatwiejsze

do odtworzenia. Na rys. 6.5 oraz 6.6 znajduje się widok wykorzystanej lotki. Ten sam przekrój został

wykorzystany do projektu lotek sterujących. Mocowanie elektroniki wraz z mechanizmem przedstawione

jest na rys. 6.7.

Rysunek 6.5: Widok przekroju lotki. Projekt oraz wykonanie: PUT Rocketlab

Rysunek 6.6: Widok boczny lotki. Projekt oraz wykonanie: PUT Rocketlab

Złożenie stanowiska testowego bez podstawy przedstawione jest na rys. 6.8. Widoczny korpus rakiety

został wykonany z tekturowej tuby, na którą zostało nawinięte włókno szklane pokryte żywicą epoksy-

82 Stanowisko testowe i wyniki eksperymentów

Rysunek 6.7: Mocowanie elektroniki wraz z mechanizmem poruszającym lotkami sterującymi. Projekt oraz wykonanie:
PUT Rocketlab.

dową. Wewnętrzna średnica korpusu wynosi 73 mm, natomiast zewnętrzna 78 mm. Profil głowicy został

wyznaczony według kształtów głowicy z serii Haacka. Wzory, według których została zaprojektowana

głowica, przedstawiają się następująco [42]:

θ(x) = arccos(1− 2x

L
), (6.1)

y(θ, C) =
R

2
√
π
·
√
θ − sin(2θ)

2
+ Csin3(θ), (6.2)

gdzie: R oznacza promień głowicy, L długość głowicy, natomiast C to stała determinująca wypukłość

głowicy.

Elementy oznaczone kolorem pomarańczowym na rys. 6.8, 6.7, 6.6, 6.5, 6.4, 6.3 oraz 6.2 zostały

wykonane za pomocą druku 3D. W tym celu został wykorzystany materiał PETG. Na rys. 6.9 znajduje

się zdjęcie wykonanego stanowiska testowego.

6.1. Opis stanowiska testowego 83

Rysunek 6.8: Złożenie stanowiska testowego bez mocowania stołowego. Projekt oraz wykonanie: PUT Rocketlab.

Rysunek 6.9: Zdjęcie wykonanego stanowiska testowego. Projekt oraz wykonanie: PUT Rocketlab.

84 Stanowisko testowe i wyniki eksperymentów

6.2 Dobór parametrów geometrycznych stanowiska

Parametry geometryczne lotek generujących prędkość kątową zostały dobrane w taki sposób, by wpro-

wadzać porównywalne wartości prędkości rotacji do rzeczywistego lotu rakiety. W symulacji dla wybra-

nego modelu rakiety maksymalna prędkość rotacji wynosi około 400
◦

s . Z rzeczywistych lotów wynika,

że prędkość rotacji jest często większa [34] niż w symulacji. Postanowiono, więc dobrać tak parame-

try by wynikowa prędkość obrotowa w tunelu była większa niż ta dla symulowanego modelu rakiety.

Wynikowe parametry geometryczne lotek powodujących rotację przedstawiają się następująco (zgodnie

z rys. 2.3 s – rozpiętość Cr – podstawa lotki):

• Zestaw 1 – rozpiętość: 55 mm, podstawa: 30 mm

• Zestaw 2 – rozpiętość 42 mm, podstawa: 20 mm

Symulowano prędkość przepływu w tunelu w uproszczony sposób, tzn. jako rampę o czasie narasta-

nia 15 sekund. Dla wybranych lotek wprowadzających ruch wirowy uzyskano przebieg prędkości rotacji

widoczny na rys. 6.10.

0 5 10 15 20 25 30
Czas [s]

0

100

200

300

400

500

600

700

Pr
dk

o
 ro

ta
cji

 [
/s

]

Pr dko rotacji rakiety w tunelu aerodynamicznym

Rysunek 6.10: Symulacja prędkości rotacji w tunelu dla wybranego zestawu lotek

Maksymalna prędkość rotacji wynosi około 700
◦

s . Symulacja została wykonana dla 4 lotek o po-

wierzchni z pierwszego zestawu. Przekrzywienia wszystkich zestawów lotek powodujących rotację wyno-

szą 8◦. Na tej podstawie dobrano odpowiednie parametry dla lotek sterujących, które wynoszą (zgodnie

z rys. 2.3 s – rozpiętość Cr – cięciwa):

• rozpiętość: 75 mm

• cięciwa: 42 mm

Profil głowicy został wyznaczony za pomocą wzorów (6.1) oraz (6.2), używając wartości C = 0,33

(typ LV-Haack), R = 39 mm, L = 100 mm.

6.3. Wyniki eksperymentu 85

6.3 Wyniki eksperymentu

Eksperyment polegał na realizacji dwóch scenariuszy testowych. Pierwszy scenariusz związany był

z włączeniem sterowania dopiero po osiągnięciu maksymalnej prędkości przepływu powietrza. Drugi sce-

nariusz natomiast polegał na włączeniu sterowania od początku działania tunelu. Za każdym razem

prędkość przepływu powietrza w tunelu aerodynamicznym wynosiła 26m
s .

Test wykonano dla następujących nastaw sterownika (3.29), (3.30):

ω0 = 15,

ωc = 0, 5 · ω0,

ξ = 0, 08,

k0 = 58, 5225,

k1 = 1, 224,

b̂ = 5000.

Te same nastawy zostały wykorzystane w symulacji w rozdziale 4.

Wyniki pierwszego scenariusza testowego zostaną przedstawione za pomocą przebiegów. Tunel został

włączony w zerowej chwili. Na początku widoczny jest wzrost prędkości rotacji. Następnie po osiągnięciu

maksymalnej prędkości przepływu, zostaje włączony sterownik. Przebiegi prędkości rotacji z żyroskopu,

estymowanej prędkości rotacji, estymowanego całkowitego zaburzenia, zadanej pozycji lotek sterujących

oraz przyspieszenia znajdują się na rys. 6.11, rys. 6.12 oraz rys. 6.13.

Na przebiegu prędkości rotacji z rys. 6.11 od 0 s do około 37 s widoczne są mody powodujące nagłe

wzrosty oraz zmniejszenia prędkości obrotowej. Ich powstawanie związane jest głównie z niesymetrycznie

rozłożoną masą i zaburzeniami w przepływie dla lotek napędzających rotację. Średnia prędkość rotacji

stabilizuje się na około 550
◦

s . W chwili 37,506 s następuje włączenie sterownika ADRC. Ten fakt przej-

rzyście pokazany jest na przebiegu estymowanej prędkości rotacji. Widoczny pik estymowanej wartości

prędkości obrotowej oznacza moment włączenia sterowania. Prędkość rotacji zmniejsza się do tunelu

akceptacji wynoszącego ±20
◦

s w 38,465 sekundzie. Daje to czas ustalania równy 0,959 s. Na rys. 6.12

w momencie włączenia sterowania widoczny jest pik estymowanego całkowitego zaburzenia, po czym

około 39 sekundy następuje ustabilizowanie na w przybliżeniu stałej wartości. Bezpośrednio przejawia

się to w tym, że zadana pozycja lotki sterującej jest odpowiednia do utrzymywania prędkości rotacji

w zdefiniowanym zakresie akceptowalności. Zatem zadanie sterowania zostało zrealizowane z wymaganą

jakością sterowania. Na przebiegu estymowanego przyspieszenia rotacji na rys. 6.13 widoczny znaczny

pik około 37 s wynoszący około 6000
◦

s2 wynika z włączenia sterowania. Następnie pik −4000
◦

s pomiędzy

37-38 sekundą oznacza hamowanie rakiety dla ruchu w osi podłużnej.

Uzyskana maksymalna prędkość rotacji jest mniejsza, niż zasymulowano w podrozdziale 6.2. Wynika

to głównie z tego, że zastosowano dwa różne zestawy lotek oraz oporów łożysk.

Następnie przedstawione zostaną wyniki dla drugiego scenariusza testowego. W tym przypadku ste-

rownik ADRC jest włączony od początku działania tunelu. W chwili 0 s następuje włączenie tunelu.

Początkowo prędkość przepływu powietrza narasta, w chwili około 2.7 sekundy na przebiegu prędkości

rotacji z żyroskopu na rys. 6.14 widoczny jest pik prędkości wynoszący około −60
◦

s . Wynika on z tego,

że przy montażu stanowiska, komputer pokładowy był włączany, a następnie mocowany w korpusie. Pod-

czas dalszego montażu, przy przypadkowym niekontrolowanym obrocie pojawiła się początkowa pozycja

lotek sterujących wynosząca około 6.8◦ widoczne na rys. 6.15. Przy narastającej prędkości przepływu po-

wietrza początkowa pozycja lotek sterujących spowodowała pik prędkości rotacji, który następnie został

zmniejszony. Na rys. 6.15 widoczne jest, jak przy narastaniu prędkości zmienia się estymowane całkowite

86 Stanowisko testowe i wyniki eksperymentów

zaburzenie. Po około 12 sekundach następuje osiągnięcie maksymalnej prędkości przepływu i stabilizacja

wartości całkowitego zaburzenia. Przyspieszenie i hamowanie rakiety w osi podłużnej, dla tego scenariu-

sza testowego widoczne jest na rys. 6.16. Zadanie sterowania zostało zrealizowane z wymaganą jakością

sterowania.

0 10 20 30 40 50
Czas [s]

200
150
100
50
0

50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800

Pr
dk

o
 ro

ta
cji

 [s
]

Sterownik ADRC wy czony Sterownik ADRC w czony

Pr dko rotacji z yroskopu [s]

0 10 20 30 40 50
Czas [s]

200

0

200

400

600

800

Es
ty

m
ow

an
a

pr
dk

o
 ro

ta
cji

 [s
]

Sterownik ADRC wy czony Sterownik ADRC w czony

Estymowana pr dko rotacji [s]

Rysunek 6.11: Scenariusz testowy 1. Przebiegi prędkości rotacji z żyroskopu oraz estymowanej prędkości rotacji.

6.3. Wyniki eksperymentu 87

0 10 20 30 40 50
Czas [s]

200

0

200

400

600

Es
ty

m
ow

an
e

ca
ko

wi
te

 za
bu

rz
en

ie
 [ra

d s3
]

Sterownik ADRC wy czony Sterownik ADRC w czony

Estymowane ca kowite zaburzenie [rad
s3]

0 10 20 30 40 50
Czas [s]

15

10

5

0

5

10

15

Ob
lic

zo
na

 p
oz

yc
ja

 lo
tk

i [
°] Sterownik ADRC wy czony Sterownik ADRC w czony

Obliczona pozycja lotki [°]

Rysunek 6.12: Scenariusz testowy 1. Przebiegi estymowanego całkowitego zaburzenia oraz zadanej pozycji na lotki
sterujące.

88 Stanowisko testowe i wyniki eksperymentów

0 10 20 30 40 50
Czas [s]

4000

2000

0

2000

4000

6000

Es
ty

m
ow

an
e

pr
zy

sp
ie

sz
en

ie
 ro

ta
cji

 [
s2

]

Sterownik ADRC wy czony Sterownik ADRC w czony

Estymowane przyspieszenie rotacji [s2]

Rysunek 6.13: Scenariusz testowy 1. Przebieg estymowanego przyspieszenia rotacji.

6.3. Wyniki eksperymentu 89

0 5 10 15 20
Czas [s]

60

50

40

30

20

10

0

10

20

Pr
dk

o
 ro

ta
cji

 [s
]

Pr dko rotacji z yroskopu [s]

0 5 10 15 20
Czas [s]

60

50

40

30

20

10

0

10

20

Es
ty

m
ow

an
a

pr
dk

o
 ro

ta
cji

 [s
] Estymowana pr dko rotacji [s]

Rysunek 6.14: Scenariusz testowy 2. Przebiegi prędkości rotacji żyroskopu oraz estymowanej prędkości rotacji

90 Stanowisko testowe i wyniki eksperymentów

0 5 10 15 20
Czas [s]

200

300

400

500

600

Es
ty

m
ow

an
e

ca
ko

wi
te

 za
bu

rz
en

ie
 [ra

d s3
] Estymowane ca kowite zaburzenie [rad

s3]

0 5 10 15 20
Czas [s]

7

6

5

4

3

2

Ob
lic

zo
na

 p
oz

yc
ja

 lo
tk

i [
°]

Obliczona pozycja lotki [°]

Rysunek 6.15: Scenariusz testowy 2. Przebiegi estymowanego całkowitego zaburzenia oraz pozycji lotki sterującej.

6.3. Wyniki eksperymentu 91

0 5 10 15 20
Czas [s]

100

50

0

50

100

150

200

250

300

Es
ty

m
ow

an
e

pr
zy

sp
ie

sz
en

ie
 ro

ta
cji

 [
s2

]

Estymowane przyspieszenie rotacji [s2]

Rysunek 6.16: Scenariusz testowy 2. Przebieg estymowanego przyspieszenia rotacji.

Rozdział 7

Podsumowanie

Wykonana praca dyplomowa stanowiła połączenie aerodynamiki, automatyki, elektroniki oraz pro-

gramowania. Spojrzenie z różnych perspektyw pozwoliło wysunąć spójne wnioski i wybrać drogi rozwoju

projektu. Wzięto pod uwagę ograniczenia wynikające z poszczególnych wymienionych sektorów.

Przeprowadzone testy w tunelu aerodynamicznym potwierdziły skuteczność wykonanego systemu ste-

rowania. Wykonanie dwóch scenariuszy testowych pozwoliło na sprawdzenie systemu w różnych warun-

kach. Pierwsze dwa testy skupiały się na sprawdzeniu skuteczności układu sterowania przy opóźnionym

załączeniu sterownika. Pierwszy scenariusz testowy wykazał, że cel sterowania został spełniony przy

opisanych zaburzeniach. Po włączeniu sterowania mody występujące przy narastaniu prędkości są pra-

wie niewidoczne. W drugim scenariuszu testowym skupiono się na przetestowaniu układu sterowania

w stanie zmieniającej się prędkości przepływu powietrza. Przy narastaniu prędkości przepływu w tunelu,

początkowa pozycja lotki spowodowała rotacje, która została następnie skompensowana. Do obszaru

ustabilizowania się prędkości przepływu, widoczne były fluktuacje znajdujące się w zdefiniowanym za-

kresie akceptacji ±20
◦

s . System więc zachowuje się adaptacyjnie względem zmieniających się warunków,

co potwierdzają wykonane testy.

Warto podkreślić, że zmiana prędkości w tunelu aerodynamicznym w porównaniu ze zmianą prędkości

rakiety podczas lotu jest mała. W przypadku tunelu prędkość przepływu zmienia się od 0 do 0,07 liczby

Macha w około 15 sekund. W przypadku rakiety w fazie napędzanej silnikiem jest to zmiana od 0 do

około 0,8 Macha w około 2 sekundy. W fazie lotu bezwładnościowego od około 0,8 do 0 liczby Macha

w ciągu około 15 sekund. Jest to znaczna różnica pomiędzy warunkami eksperymentalnymi a rzeczywistym

lotem. Układ wykonawczy sterujący lotkami ma opóźnienie liczące 0,025 s, natomiast jego stała czasowa

wynosi 0,0197 sekundy. Co daje 0,0447 sekundy zwłoki w ustaleniu zadanej pozycji. W przypadku tunelu

aerodynamicznego znaczenie tego było niewielkie. Natomiast w locie rakiety, kiedy prędkość znacząco

zmienia się w krótkim czasie, możliwe jest niespełnienie zadania sterowania z akceptowalną jakością

(większa wartość czasu ustalania, nieosiągnięcie zakresu akceptowalnej prędkości rotacji). Dodatkowo

w symulacji zauważono, że z powodu znacznego opóźnienia układu wykonawczego istnieje wąski zakres

nastaw, dla którego zadanie sterowania zostaje zrealizowane z akceptowalną jakością.

Zostało potwierdzone, że zaimplementowany sterownik ADRC z uwzględnieniem opóźnienia realizuje

zadanie sterowania z akceptowalną jakością w warunkach eksperymentalnych i symulacyjnych. Istnieją

jednak wątpliwości dotyczące efektywności wybranego sterownika w przypadku tak znaczącego opóźnie-

nia. W automatyce jednym ze sposobów radzenia sobie ze znacznymi opóźnieniami jest zastosowanie

predyktora Smitha [19][37]. Predyktor Smitha pozwala między innymi na zwiększenie pasma pętli za-

mkniętej. W praktyce poprawia jakość sterowania dla obiektów ze znacznymi opóźnieniami. Jednym z za-

łożeń zastosowania wspomnianego predyktora jest dokładna znajomość modelu w celu uzyskania dobrej

jakości sterowania. W przypadku zaprezentowanego obiektu to założenie nie jest spełnione. Jednak ist-

93

94 Podsumowanie

nieje rozszerzenie sterownika, które pozwala połączyć zalety predyktora Smitha oraz klasycznego ADRC.

Zaproponowany w [20] sterownik FFC-ADRC redukuje wpływ opóźnienia. Poprawia jakość estymaty cał-

kowitego zaburzenia poprzez umożliwienie zwiększenia pasma przenoszenia obserwatora. Warto jednak

zauważyć, że zastosowanie tego rozszerzenia skomplikuje kod oprogramowania komputera pokładowego

i wydłuży czas obliczeń sterownika. Może się to wiązać z przekroczeniem maksymalnego wymaganego

czasu obliczeń.

Model rakiety zaimplementowany w programie MATLAB pozwolił na wstępną weryfikację działania

układu sterowania przed wykonaniem eksperymentu w świecie rzeczywistym. Dzięki temu, że zaimple-

mentowano model rakiety 6DoF, możliwe było nie tylko sprawdzenie skuteczności algorytmu sterowania,

ale także weryfikację stabilności lotu rakiety. Symulator nie daje jednak możliwości symulacji zachowania

rakiety podczas lotu przy zmiennym wietrze. W związku z tym w przyszłości należałoby zaimplementować

model wiatru pozwalający na symulację warunków pogodowych zbliżonych do rzeczywistych.

Podczas testów od strony oprogramowania nie zauważono błędów powodujących przerwanie testu. Za-

implementowana architektura pozwoliła mikrokontrolerowi na wykonywanie obliczeń związanych ze ste-

rownikiem w ramach 5, 98% okresu próbkowania. W przypadku wykorzystanych parametrów sterownika

jest to satysfakcjonujący wynik, jednakże jest to część, którą można poddać rewizji. Do tego można wy-

korzystać bibliotekę CMSIS-DSP [1], której funkcje wykonujące operacje na macierzach, wykorzystują

instrukcje SIMD (ang. Single Instruction Multiple Data). Jest to rodzaj instrukcji pozwalający na wy-

konywanie serii obliczeń w jednym cyklu. Jest to jedna z metod zrównoleglania przetwarzania danych.

Zastosowanie tej biblioteki pozwoliłoby na skrócenie czasu obliczeń. Zauważono również, że wybrana za-

stępcza pamięć nieulotna flash pozwala na zapis pakietów danych przez około 5 minut. Jest to czas, który

jest wystarczający do zapisu danych z lotu, jednakże powoduje to komplikację kodu. W związku z tym

korzystniejszą opcją jest zastosowanie zapasowej pamięci nieulotnej pozwalającej na zapis większej ilości

danych.

Wykorzystany mikrokontroler w połączeniu z oprogramowaniem pozwalał na sprawne wykonywanie

stosownych obliczeń. Zastosowany żyroskop pozwolił na wykonywanie akceptowalnej jakości pomiarów

prędkości rotacji przy wykorzystanej szybkości próbkowania na poziomie 1000 Hz. Zastosowane złącze

na kartę microSD pozwoliło na ułatwiony dostęp do danych pomiarowych uzyskanych podczas wykony-

wania eksperymentów. Dzięki wbudowanej ładowarce do ogniw litowo-jonowych możliwe było bezpro-

blemowe utrzymywanie odpowiedniego stanu naładowania baterii. Możliwe jest jednak dalsze uspraw-

nianie komputera pokładowego. Mimo możliwości sterowania serwomechanizmami modelarskimi wyko-

rzystując sygnał PWM generowany przez mikrokontroler, na płytce drukowanej brakuje zabezpieczenia

nadprądowego, które zmniejszyłoby ryzyko uszkodzenia komputera w przypadku zwarcia. Dodatkowym

elementem zmniejszającym szansę na wywołanie awarii byłaby implementacja zabezpieczenia przed od-

wrotną polaryzacją napięcia zasilającego. Zauważono także potrzebę dodania dodatkowego złącza na

kartę microSD w celu zwiększenia redundancji metod zapisu danych pomiarowych. Spowodowane jest to

częstymi nagłymi awariami kart SD. Zwiększenie liczby komponentów zapisujących dane może wyma-

gać także dodanie dodatkowej jednostki obliczeniowej (np. w postaci drugiego mikrokontrolera) w celu

zmniejszenia obciążenia mikrokontrolera odpowiadającego za sterowanie.

Wykorzystany układ wykonawczy jest efektywny przy określonych nastawach sterownika oraz warun-

kach eksperymentalnych. Serwomechanizmy modelarskie wprowadzają znaczne opóźnienie. Są one bezpo-

średnią przyczyną ograniczenia wartości nastaw, co skutkuje w pogorszeniu jakości sterowania. Jednym

z rozwiązań tego problemu jest więc rewizja układu wykonawczego.

Istnieją wątpliwości co do powtarzalności wykonanego układu sterowania podczas lotu rakiety w rze-

czywistych warunkach. Bezpośrednią przyczyną powstałych wątpliwości są konsekwencje wyboru serwo-

mechanizmów modelarskich powodujących duże opóźnienie czasowe układu wykonawczego. W związku

z tym istnieje ograniczenie pasma przenoszenia obserwatora LESO, jak i wąski zakres doboru nastaw dla

Podsumowanie 95

sterownika pętli zewnętrznej zapewniających akceptowalną jakość sterowania. Może skutkować to małą

skutecznością układu sterowania w przypadku szybkozmiennych zaburzeń. Zaproponowano sposoby rewi-

zji systemu sterowania. Po pierwsze należałoby przeprojektować układ wykonawczy poruszający lotkami

pod kątem zastosowania podzespołów generujących mniejsze opóźnienia czasowe. Innym ze sposobów

zmniejszenia wpływu opóźnienia na jakość sterowania byłoby zastosowanie sterownika FFC-ADRC.

Końcowo planowane są testy układu sterowania podczas lotu rakiety w rzeczywistych warunkach.

Po analizie danych, sprawdzeniu powtarzalności, finalnie byłaby możliwość prowadzenia pierwszych misji.

Warto wspomnieć, że system sterowania prędkością rotacji zaprojektowany został dla lotów poddźwięko-

wych. W przyszłości można rozszerzyć projekt dla lotów przekraczający obszar poddźwiękowy.

Literatura

[1] CMISIS-DSP. https://www.keil.com/pack/doc/CMSIS/DSP/html/group__MatrixVectMult.html.

[2] CMSIS-RTOS API V2. https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS.html.

[3] Enkoder magnetyczny AM4096. https://www.rls.si/eng/fileuploader/download/download/?d=1&file=

custom%2Fupload%2FAM4096D02_09_bookmark.pdf.

[4] FatFS. https://www.st.com/resource/en/user_manual/

um1721-developing-applications-on-stm32cube-with-fatfs-stmicroelectronics.pdf.

[5] FreeRTOS. https://www.freertos.org/a00106.html.

[6] KiCAD. https://www.kicad.org/.

[7] OpenRocket — kod źródłowy. https://github.com/openrocket/openrocket.

[8] PUT Rocketlab. https://rocketlab.put.poznan.pl.

[9] Serwomechanizm PowerHD R12-S. http://www.chd.hk/UploadFiles/Att/2022030216415071.pdf.

[10] A. Brown, Jr., Martin L. Nason. Flight Investigation to evaluate the roll-rate stabilization system of the

naval ordnance test station Slidewinder missle at mach numbers from 0.9 to 2.3. Langley Aeronautical

Laboratory, National Advisory Committee for Aeronautics, 1954.

[11] James S. Barrowman. The practical calculation of the aerodynamic characteristics of slender finned

vehicles. Master’s thesis, The Catholic University of America, Waszyngton, USA, 1967.

[12] Karl J. Åström Björn Wittenmark. Adaptive Control. Second edition. Addison-Wesley, USA, 1995.

[13] John H. Blakelock. Automatic control of aircraft and missiles. Second edition. John Wiley & Sons Inc., Air

Force Institute of Technology, USA, 1991.

[14] Bosch Sensortec GmbH. BMI08X Sensor API. https://github.com/BoschSensortec/BMI08x-Sensor-API.

[15] Bosch Sensortec GmbH. BMI088: Datasheet, styczeń 2022.

[16] Christopher L. Rumsey Christopher A. Eggert. CFD Study of NACA 0018 Airfoil with Flow Control.

National Aeronautics and Space Administration, 2017.

[17] Michael V. Cook. Flight dynamics principles. Butterworth-Heinemann, MA, USA, 2007.

[18] Mark Davies. The Standard Handbook for Aeronautical and Astronautical Engineers. McGraw-Hill, Nowy

Jork, USA, 2003.

[19] Stephen J. Dodds. Feedback Control. Linear, nonlinear and robust techniques and design with industrial

applications. Springer, Londyn, UK, 2015.

[20] Dongyang Zhang, Xiaolan Yao, Qinghe Wu, and Zhuoyue Song. ADRC based control for a class of input

time delay systems. Journal of Systems Engineering and Electronics, 28(6):1210–1220, 2017.

[21] Fen Wu, Andy Packard, Gary Balas. Systematic gain-scheduling control design: a missile autopilot

example. Asian Journal of Control, 4(3):341–347, 2002.

97

https://www.keil.com/pack/doc/CMSIS/DSP/html/group__MatrixVectMult.html
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS.html
https://www.rls.si/eng/fileuploader/download/download/?d=1&file=custom%2Fupload%2FAM4096D02_09_bookmark.pdf
https://www.rls.si/eng/fileuploader/download/download/?d=1&file=custom%2Fupload%2FAM4096D02_09_bookmark.pdf
https://www.st.com/resource/en/user_manual/um1721-developing-applications-on-stm32cube-with-fatfs-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um1721-developing-applications-on-stm32cube-with-fatfs-stmicroelectronics.pdf
https://www.freertos.org/a00106.html
https://www.kicad.org/
https://github.com/openrocket/openrocket
https://rocketlab.put.poznan.pl
http://www.chd.hk/UploadFiles/Att/2022030216415071.pdf
https://github.com/BoschSensortec/BMI08x-Sensor-API

98 Literatura

[22] E.L. Fleeman. Tactical missile design (Vol. 468). American Institute of Aeronautics and Astronautics,

Reston, USA, 2006.

[23] Zhiqiang Gao. Scaling and bandwidth-parameterization based controller tuning. American Control

Conference, Denver, USA, pages 4989–4996, 2003.

[24] Zhiqiang Gao. Active disturbance rejection control: A paradigm shift in feedback control system design.

American Control Conference, Minneapolis, MN, USA, 41(2):2399–2405, 2006.

[25] Jingqing Han. From PID to Active Disturbance Rejection Control. IEEE Transactions on Industrial

Electronics, 56(3):900–906, 2009.

[26] Jinho Jang, Anuradha M. Annaswamy, and Eugene Lavretsky. Adaptive control of time-varying systems

with gain-scheduling. American Control Conference, pages 3416–3421, 2008.

[27] Justin R. Smith, Jeff Cullina. CFD Assessment of Fin Manufacturing Defect to Set Fin Cant Angle and

Achieve Nominal Roll Rate. AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, 2011.

[28] James C. Manning. Some flight-induced environmental data obtained from two Sidewinder-Arcas

sounding-rocket launches. Langley Research Center, National Aeronautics and Space Administration, 1971.

[29] Martin L. Nason, Clarence A. Brown, Jr., Rupert S. Rock. An evaluation of the roll-rate stabilization

system of the Sidewinder missile at Mach numbers from 0.9 to 2.3. Langley Aeronautical Laboratory,

National Advisory Committee for Aeronautics, 1955.

[30] Maciej Marcin Michałek. Modele obiektów sterowania do celów PUR - materiały wykładowe z przedmiotu

Projektowanie układów regulacji, Politechnika Poznańska.

[31] Maciej Marcin Michałek. Sterowanie Active/Adaptive Disturbance Rejection Control (ADRC) - materiały

wykładowe z przedmiotu Sterowanie adaptacyjne, Politechnika Poznańska.

[32] Maciej Marcin Michałek. Robust trajectory following without availability of the reference time-derivatives

in the control scheme with active disturbance rejection. pages 1536–1541, 2016.

[33] Monolithic Power Systems Inc. MP2639A 2-Cell Li-Ion or Li-Polymer Switching Charger Compatible with

5V Input and Integrated, Bidirectional Charge/Discharge with Cell Balance, grudzień 2019.

[34] Sampo Niskanen. Development of an Open Source model rocket simulation software. Master’s thesis,

Helsinki University of Technology, Helsinki, Finlandia, 2009.

[35] Shen Zhao, Zhiqiang Gao. Modified active disturbance rejection control for time-delay systems. ISA

Transactions, 53(4):882–888, 2013.

[36] George M. Siouris. Missile guidance and control systems. Springer, OH, USA, 2004.

[37] O.J.M. Smith. Closed control of loops with dead time. Chemical Engineering Progress, 53:217–219, 1957.

[38] STMicroelectronics N.V. STM32CubeIDE.

https://www.st.com/en/development-tools/stm32cubeide.html.

[39] STMicroelectronics N.V. STM32F412xE STM32F412xG Datasheet, grudzień 2017.

[40] Texas Instruments Inc. TLV766-Q1 500-mA, 16-V Linear Voltage Regulator, grudzień 2020.

[41] Natalia Wiśniewska Tomasz Krakowski. Wstępna analiza aktywnego aerodynamicznego sterowania

prędkości rotacji dla rakiet poddźwiękowych. Nauka dla obronności. Bezpieczeństwo infrastruktury

krytycznej., 2(2):305–318, 2022.

[42] Departament Obrony USA. Design of aerodynamically stabilized free rockets. 1990.

[43] Wenchao Xue, Yi Huang. On Frequency-domain Analysis of ADRC for Uncertain System. American

Control Conference, Waszyngton, DC, USA, pages 6637–6642, 2013.

[44] Jeff S. Shamma Wilson J. Rugh. Research on gain scheduling. Automatica, 36:1401–1425, 2000.

https://www.st.com/en/development-tools/stm32cubeide.html

99

[45] Winbond Electronics Corp. 3V 64M-bit serial flash memory with dual, quad SPI, marzec 2018.

[46] Jingqing Han Zhiqiang Gao, Yi Huang. An alternative paradigm for control system design. IEEE

Conference on Decision and Control, 2001.

[47] Zhiqiang Gao, Aaron Radke, Robert Miklosovic. Discrete Implementation and Generalization of the

Extended State Observer. American Control Conference (ACC), 2006.

© 2023 Natalia Wiśniewska, Andrzej Rafalski

Instytut Automatyki i Robotyki, Wydział Automatyki, Robotyki i Elektrotechniki
Politechnika Poznańska

	1 Wprowadzenie
	1.1 Cel i zakres pracy
	1.2 Znaczenie tematu pracy
	1.3 Struktura pracy dyplomowej

	2 Równania ruchu rakiety
	2.1 Fizyczne podstawy równań modelu
	2.2 Parametry modelu rakiety - wyprowadzenie zależności
	2.3 Wyprowadzenie równań dla ruchu postępowego
	2.4 Wyprowadzenie równań dla ruchu obrotowego

	3 Projekt układu sterowania
	3.1 Definicja zadania sterowania
	3.2 Uzasadnienie wyboru algorytmu sterowania
	3.3 Podstawy działania ADRC
	3.4 Wyprowadzenie równań dla sterownika ADRC

	4 Implementacja układu sterowania i modelu rakiety w środowisku MATLAB/Simulink
	4.1 Implementacja modelu rakiety
	4.1.1 Parametry fizyczne wykorzystanej rakiety
	4.1.2 Sposób implementacji modelu rakiety w środowisku MATLAB/Simulink
	4.1.3 Implementacja układu wykonawczego w środowisku MATLAB/Simulink

	4.2 Porównanie działania modelu rakiety z programem OpenRocket
	4.3 Implementacja układu sterowania ADRC
	4.3.1 Implementacja w środowisku MATLAB/Simulink
	4.3.2 Dobór parametrów sterownika

	4.4 Wyniki działania układu sterowania w symulacji

	5 Implementacja układu sterowania na pokładzie rakiety sportowej
	5.1 Projekt płytki drukowanej komputera pokładowego
	5.1.1 Dobór elementów elektronicznych komputera pokładowego
	5.1.2 Projekt PCB

	5.2 Oprogramowanie komputera pokładowego
	5.2.1 Opis architektury oprogramowania
	5.2.2 Implementacja sterownika ADRC w oprogramowaniu komputera
	5.2.3 Sposób zapisu danych pomiarowych

	5.3 Weryfikacja działania oprogramowania komputera
	5.3.1 Test oprogramowania komputera pokładowego
	5.3.2 Test czujnika żyroskopowego komputera pokładowego

	5.4 Budowa i opis działania mechanizmu wykonawczego poruszającego lotkami sterującymi
	5.5 Identyfikacja modelu układu wykonawczego poruszającego lotkami sterującymi
	5.5.1 Wyznaczenie charakterystyki statycznej
	5.5.2 Wyznaczenie modelu dynamiki układu wykonawczego poruszającego lotkami sterującymi

	6 Stanowisko testowe i wyniki eksperymentów
	6.1 Opis stanowiska testowego
	6.2 Dobór parametrów geometrycznych stanowiska
	6.3 Wyniki eksperymentu

	7 Podsumowanie
	Literatura

